python 广义霍夫变换(GHT)

2023-10-20 18:40
文章标签 python 变换 霍夫 广义 ght

本文主要是介绍python 广义霍夫变换(GHT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

广义霍夫变换(GHT),是霍夫变换的改进,其可以检测任意形状。原理图如下:


x = xc + xor xc = x x′    y = yc + yor yc = y y
cos(
π − α) =y′/r or y′ = rcos(π − α) = −rsin(α)
sin(π − α) =x′/r or x′ = rsin(π − α) = −rcos(α)

结合上面得到xc = x + rcos(α)yc = y + rsin(α)

处理过程:

1、选择参考点(xc, yc)

2、连接参考点和边界点

3、计算φ

4、建立R-table 表,储存参考点作为φ的函数,如下:

R-table允许我们使用边界点和梯度角重新计算参考点的位置。

检测:

1、量化参数空间

P[xcmin ... xcmax][ycmin ... ycmax]

2、对于每个边界点,用梯度角检索出表中的alpha,rho,并计算边界点。并投票

++(P[xc][yc])

3、如果P[xc][yc] > T则对象边界为(xc,yc)

一般情况:

假设对象经过旋转和缩放,则:

:这也是my coding中左图匹配点减去右图匹配点各种角度和缩放情况下的值。

GHT优点:

1、GHT 算法通常用来物体识别

2、对于物体形变具有鲁棒性

3、能容忍噪声

缺点:计算量大

在图像匹配的初匹配结果中,会存在误匹配,误匹配的剔除方法很多。这里采用GHT算法,因为初匹配结果就相对与R-table(2),所以就不必简历R-table

代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from appenimage import appendimage
def hough_estimate_mistake(im1,im2,pts1,pts2):A=np.zeros((4,4,12,5))Apoint=np.zeros((len(pts1),12,5,4))point1=np.zeros(pts1.shape)point2=np.zeros(pts2.shape)for i in range(len(pts1)):for sita_index in range(12):sita=np.deg2rad(2*np.pi/12*sita_index)for scale_index in range(5):scale=(2**scale_index)*0.25xc=pts1[i,0]-(pts2[i,0]*np.cos(sita)-pts2[i,1]*np.sin(sita))*scaleyc=pts1[i,1]-(pts2[i,0]*np.sin(sita)+pts2[i,1]*np.cos(sita))*scalex,y=0,0if xc<=0.25*im1.shape[1]:x=0elif xc<=0.5*im1.shape[1]:x=1elif xc<=0.75*im1.shape[1]:x=2elif xc<=im1.shape[1]:x=3if yc<=0.25*im1.shape[0]:y=0elif yc<=0.5*im1.shape[0]:y=1elif yc<=0.75*im1.shape[0]:y=2elif yc<=im1.shape[0]:y=3if x>=0 and x<=3 and y>=0 and y<=3:A[x,y,sita_index,scale_index]+=1Apoint[i,sita_index,scale_index,:]=[x,y,sita_index,scale_index]max1=0for x in range(4):for y in range(4):tmpA=np.reshape(A[x,y,:,:],(12,5))tmp=np.max(tmpA) if tmp>max1:max1=tmplocate=[x,y]sita,scale=np.where(tmpA==tmp)sita_scale=[sita[0],scale[0]]inner=0for i in range(len(pts1)):for sita_index in range(12):for scale_index in range(5):  x=Apoint[i,sita_index,scale_index,0]y=Apoint[i,sita_index,scale_index,1]sita_tmp=Apoint[i,sita_index,scale_index,2]scale_tmp=Apoint[i,sita_index,scale_index,3]if x==locate[0] and y==locate[1] and sita_tmp==sita_scale[0] and scale_tmp==sita_scale[1]:point1[inner,:]=pts1[i,:]point2[inner,:]=pts2[i,:]inner+=1return point1,point2
def matchIMG(im1,im2,kp1,kp2,des1,des2):FLANN_INDEX_KDTREE=0index_p=dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)searth_p=dict(checks=50)flann=cv2.FlannBasedMatcher(index_p,searth_p)matches=flann.knnMatch(des1,des2,k=2)good =[]pts1=[]pts2=[]for i,(m,n) in enumerate(matches):if m.distance<0.6*n.distance:good.append(m)pts1.append(kp1[m.queryIdx].pt)pts2.append(kp2[m.trainIdx].pt)pts1=np.float32(pts1)pts2=np.float32(pts2)return pts1,pts2     
if __name__=="__main__":im1_=cv2.imread(r"C:\Users\Y\Desktop\input_0.png")im2_=cv2.imread(r"C:\Users\Y\Desktop\input_1.png")im1=cv2.cvtColor(im1_,cv2.COLOR_BGR2GRAY)im2=cv2.cvtColor(im2_,cv2.COLOR_BGR2GRAY)im2=cv2.GaussianBlur(im2,(7,7),2)sift=cv2.xfeatures2d.SIFT_create()kp1,des1=sift.detectAndCompute(im1,None)kp2,des2=sift.detectAndCompute(im2,None)pts1,pts2=matchIMG(im1,im2,kp1,kp2,des1,des2)       point1,point2=np.float32(hough_estimate_mistake(im1,im2,pts1,pts2))im3=appendimage(im1,im2)pts2_new=pts2.copy()point2_new=point2.copy()for i in range(len(pts2)):pts2_new[i,0]=pts2_new[i,0]+np.float32(im1.shape[1])for i in range(len(pts2)):point2_new[i,0]=point2_new[i,0]+np.float32(im1.shape[1])for i in range(len(pts1)):cv2.line(im3,tuple(pts1[i]),tuple(pts2_new[i]),(0,255,0),2)
#    for i in range(len(point1)):
#        cv2.line(im3,tuple(point1[i]),tuple(point2_new[i]),(0,0,255),2)

这篇关于python 广义霍夫变换(GHT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248980

相关文章

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php