python 广义霍夫变换(GHT)

2023-10-20 18:40
文章标签 python 变换 霍夫 广义 ght

本文主要是介绍python 广义霍夫变换(GHT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

广义霍夫变换(GHT),是霍夫变换的改进,其可以检测任意形状。原理图如下:


x = xc + xor xc = x x′    y = yc + yor yc = y y
cos(
π − α) =y′/r or y′ = rcos(π − α) = −rsin(α)
sin(π − α) =x′/r or x′ = rsin(π − α) = −rcos(α)

结合上面得到xc = x + rcos(α)yc = y + rsin(α)

处理过程:

1、选择参考点(xc, yc)

2、连接参考点和边界点

3、计算φ

4、建立R-table 表,储存参考点作为φ的函数,如下:

R-table允许我们使用边界点和梯度角重新计算参考点的位置。

检测:

1、量化参数空间

P[xcmin ... xcmax][ycmin ... ycmax]

2、对于每个边界点,用梯度角检索出表中的alpha,rho,并计算边界点。并投票

++(P[xc][yc])

3、如果P[xc][yc] > T则对象边界为(xc,yc)

一般情况:

假设对象经过旋转和缩放,则:

:这也是my coding中左图匹配点减去右图匹配点各种角度和缩放情况下的值。

GHT优点:

1、GHT 算法通常用来物体识别

2、对于物体形变具有鲁棒性

3、能容忍噪声

缺点:计算量大

在图像匹配的初匹配结果中,会存在误匹配,误匹配的剔除方法很多。这里采用GHT算法,因为初匹配结果就相对与R-table(2),所以就不必简历R-table

代码如下:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from appenimage import appendimage
def hough_estimate_mistake(im1,im2,pts1,pts2):A=np.zeros((4,4,12,5))Apoint=np.zeros((len(pts1),12,5,4))point1=np.zeros(pts1.shape)point2=np.zeros(pts2.shape)for i in range(len(pts1)):for sita_index in range(12):sita=np.deg2rad(2*np.pi/12*sita_index)for scale_index in range(5):scale=(2**scale_index)*0.25xc=pts1[i,0]-(pts2[i,0]*np.cos(sita)-pts2[i,1]*np.sin(sita))*scaleyc=pts1[i,1]-(pts2[i,0]*np.sin(sita)+pts2[i,1]*np.cos(sita))*scalex,y=0,0if xc<=0.25*im1.shape[1]:x=0elif xc<=0.5*im1.shape[1]:x=1elif xc<=0.75*im1.shape[1]:x=2elif xc<=im1.shape[1]:x=3if yc<=0.25*im1.shape[0]:y=0elif yc<=0.5*im1.shape[0]:y=1elif yc<=0.75*im1.shape[0]:y=2elif yc<=im1.shape[0]:y=3if x>=0 and x<=3 and y>=0 and y<=3:A[x,y,sita_index,scale_index]+=1Apoint[i,sita_index,scale_index,:]=[x,y,sita_index,scale_index]max1=0for x in range(4):for y in range(4):tmpA=np.reshape(A[x,y,:,:],(12,5))tmp=np.max(tmpA) if tmp>max1:max1=tmplocate=[x,y]sita,scale=np.where(tmpA==tmp)sita_scale=[sita[0],scale[0]]inner=0for i in range(len(pts1)):for sita_index in range(12):for scale_index in range(5):  x=Apoint[i,sita_index,scale_index,0]y=Apoint[i,sita_index,scale_index,1]sita_tmp=Apoint[i,sita_index,scale_index,2]scale_tmp=Apoint[i,sita_index,scale_index,3]if x==locate[0] and y==locate[1] and sita_tmp==sita_scale[0] and scale_tmp==sita_scale[1]:point1[inner,:]=pts1[i,:]point2[inner,:]=pts2[i,:]inner+=1return point1,point2
def matchIMG(im1,im2,kp1,kp2,des1,des2):FLANN_INDEX_KDTREE=0index_p=dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)searth_p=dict(checks=50)flann=cv2.FlannBasedMatcher(index_p,searth_p)matches=flann.knnMatch(des1,des2,k=2)good =[]pts1=[]pts2=[]for i,(m,n) in enumerate(matches):if m.distance<0.6*n.distance:good.append(m)pts1.append(kp1[m.queryIdx].pt)pts2.append(kp2[m.trainIdx].pt)pts1=np.float32(pts1)pts2=np.float32(pts2)return pts1,pts2     
if __name__=="__main__":im1_=cv2.imread(r"C:\Users\Y\Desktop\input_0.png")im2_=cv2.imread(r"C:\Users\Y\Desktop\input_1.png")im1=cv2.cvtColor(im1_,cv2.COLOR_BGR2GRAY)im2=cv2.cvtColor(im2_,cv2.COLOR_BGR2GRAY)im2=cv2.GaussianBlur(im2,(7,7),2)sift=cv2.xfeatures2d.SIFT_create()kp1,des1=sift.detectAndCompute(im1,None)kp2,des2=sift.detectAndCompute(im2,None)pts1,pts2=matchIMG(im1,im2,kp1,kp2,des1,des2)       point1,point2=np.float32(hough_estimate_mistake(im1,im2,pts1,pts2))im3=appendimage(im1,im2)pts2_new=pts2.copy()point2_new=point2.copy()for i in range(len(pts2)):pts2_new[i,0]=pts2_new[i,0]+np.float32(im1.shape[1])for i in range(len(pts2)):point2_new[i,0]=point2_new[i,0]+np.float32(im1.shape[1])for i in range(len(pts1)):cv2.line(im3,tuple(pts1[i]),tuple(pts2_new[i]),(0,255,0),2)
#    for i in range(len(point1)):
#        cv2.line(im3,tuple(point1[i]),tuple(point2_new[i]),(0,0,255),2)

这篇关于python 广义霍夫变换(GHT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248980

相关文章

Python多重继承慎用的地方

《Python多重继承慎用的地方》多重继承也可能导致一些问题,本文主要介绍了Python多重继承慎用的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录前言多重继承要慎用Mixin模式最后前言在python中,多重继承是一种强大的功能,它允许一个

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-