【解决方案】成功解决将XGBoost中plot_importance绘图时出现的f0、f1、f2、f3、f4、f5等改为对应特征的字段名

本文主要是介绍【解决方案】成功解决将XGBoost中plot_importance绘图时出现的f0、f1、f2、f3、f4、f5等改为对应特征的字段名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.问题描述

使用XGBoost中的plot_importance绘制特征重要性图时,纵坐标并不是特征名,而是f0、f1、f2、f3、f4、f5…fn等一系列符号。

2.问题结果

成功解决将XGBoost中plot_importance绘图时出现的f0、f1、f2、f3、f4、f5等改为对应特征的字段名。

3.解决方案

3.1 项目描述

使用XGBoost模型训练sklearn中的乳腺癌数据(二分类,这篇文章中,介绍过此数据集:【ML】机器学习数据集:sklearn中分类数据集介绍),对训练后的模型中的特征重要性进行排序,即可视化模型中的特征重要性。

3.2 项目初始代码

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 29 13:47:06 2022@author: augustqi
"""# 导入需要的包
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, accuracy_score, auc, recall_score, precision_score, f1_score
from sklearn.metrics import roc_curve, precision_recall_curve, average_precision_score
from xgboost import XGBClassifier
from xgboost import plot_importance# 加载数据集,这里直接使用datasets包里面的乳腺癌分类数据(二分类)
cancer = datasets.load_breast_cancer()X = cancer.data
y = cancer.target# 输出数据集的形状,该数据集里面有569个样本,每个样本有30个特征(569, 30)
print(X.shape)
# 输出标签的个数为 569
print(y.shape)# 使用train_test_split()函数对训练集和测试集进行划分,第一个参数是数据集特征,第二个参数是标签,第三个为测试集占总样本的百分比
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 6)# 使用XGBoost进行训练
model = XGBClassifier()
model.fit(x_train,y_train)# 绘制重要性曲线, max_num_feature参数设置输出前30重要的特征,【数据集中共有30个特征】
fig, ax = plt.subplots(figsize=(10,8))
plot_importance(model, max_num_features=30, ax=ax)
plt.savefig("demo_plot_importance.png", dpi=600)
plt.show()# 类别值
y_pred = model.predict(x_test)# 输出ACC的值
acc = accuracy_score(y_test, y_pred)
print("acc:", acc)
# 输出recall值
re = recall_score(y_test, y_pred)
print("recall:", re)
# 输出precision
pre = precision_score(y_test, y_pred)
print("precision:", pre)
# 输出f1 score
f1 = f1_score(y_test, y_pred)
print("f1 score:", f1)# 概率得分
y_score = model.predict_proba(x_test)[:,1]# 直接计算auc的值
auc_1 = roc_auc_score(y_test, y_score)
print("auc_1:", auc_1)# 绘制ROC曲线
fpr, tpr, thresholds_roc = roc_curve(y_test, y_score)
# 间接计算auc的值
auc_2 = auc(fpr, tpr) 
print("auc_2:", auc_2)# 间接计算auc的值的好处,就是可以知道fpr和tpr,绘制曲线
plt.plot(fpr,tpr,'r--', label='auc=%0.4f'%auc_2)
plt.title("ROC Curve")
plt.legend()
plt.savefig("demo_roc.png",dpi=600)
plt.show()# 绘制PR曲线
precision, recall, thresholds_pr = precision_recall_curve(y_test, y_score)
aupr = auc(recall, precision)
print("aupr:", aupr)
plt.plot(recall, precision, 'g--', label='aupr=%0.4f'%aupr)
plt.title("PR Curve")
plt.legend()
plt.savefig("demo_pr.png",dpi=600)
plt.show()

测试集上的一些统计指标:

在这里插入图片描述

ROC曲线:
在这里插入图片描述
PR曲线:

在这里插入图片描述
特征重要性图:

在这里插入图片描述

我们主要看特征重要性图(其他图和统计指标,是我附带送给各位的,不是本文的重点,嘿嘿),输入到XGBoost模型训练的数据共有30维,即30个特征,哪这30个特征分别对模型的影响是多少呢?请往下看。

随着科学技术的发展,机器学习这个黑盒子也在被慢慢打开,XGBoost中提供了一个plot_importance函数用于绘制特征的重要性。从特征重要性图可以看到f0、f1、f2、f3…f29,这些符号对应数据集中的30个特征,但是我们如何将纵坐标的这些符号换成对应的特征名呢?从而可以更直观看到特征的重要性。

我们只需在初始的项目代码中加入:

feature_names = cancer.feature_names
feature_names = list(feature_names)model.get_booster().feature_names = feature_names

然后绘制具有特征名的特征重要性图:

在这里插入图片描述
大功告成,f0、f1、f2、f3…f29成功和数据集中的特征名对应起来了,可以看到worst texture(f21)特征对模型的影响最大。

3.3 项目最终代码

# -*- coding: utf-8 -*-
"""
Created on Thu Sep 29 13:47:06 2022@author: augustqi
"""# 导入需要的包
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, accuracy_score, auc, recall_score, precision_score, f1_score
from sklearn.metrics import roc_curve, precision_recall_curve, average_precision_score
from xgboost import XGBClassifier
from xgboost import plot_importance# 加载数据集,这里直接使用datasets包里面的乳腺癌分类数据(二分类)
cancer = datasets.load_breast_cancer()X = cancer.data
y = cancer.target
feature_names = cancer.feature_names
feature_names = list(feature_names)# 输出数据集的形状,该数据集里面有569个样本,每个样本有30个特征(569, 30)
print(X.shape)
# 输出标签的个数为 569
print(y.shape)# 使用train_test_split()函数对训练集和测试集进行划分,第一个参数是数据集特征,第二个参数是标签,第三个为测试集占总样本的百分比
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 6)# 使用XGBoost进行训练
model = XGBClassifier()
model.fit(x_train,y_train)model.get_booster().feature_names = feature_names# 绘制重要性曲线, max_num_feature参数设置输出前30重要的特征,【数据集中共有30个特征】
fig, ax = plt.subplots(figsize=(16,10))
plot_importance(model, max_num_features=30, ax=ax)
plt.savefig("demo_plot_importance.png", dpi=600)
plt.show()# 类别值
y_pred = model.predict(x_test)# 输出ACC的值
acc = accuracy_score(y_test, y_pred)
print("acc:", acc)
# 输出recall值
re = recall_score(y_test, y_pred)
print("recall:", re)
# 输出precision
pre = precision_score(y_test, y_pred)
print("precision:", pre)
# 输出f1 score
f1 = f1_score(y_test, y_pred)
print("f1 score:", f1)# 概率得分
y_score = model.predict_proba(x_test)[:,1]# 直接计算auc的值
auc_1 = roc_auc_score(y_test, y_score)
print("auc_1:", auc_1)# 绘制ROC曲线
fpr, tpr, thresholds_roc = roc_curve(y_test, y_score)
# 间接计算auc的值
auc_2 = auc(fpr, tpr) 
print("auc_2:", auc_2)# 间接计算auc的值的好处,就是可以知道fpr和tpr,绘制曲线
plt.plot(fpr,tpr,'r--', label='auc=%0.4f'%auc_2)
plt.title("ROC Curve")
plt.legend()
plt.savefig("demo_roc.png",dpi=600)
plt.show()# 绘制PR曲线
precision, recall, thresholds_pr = precision_recall_curve(y_test, y_score)
aupr = auc(recall, precision)
print("aupr:", aupr)
plt.plot(recall, precision, 'g--', label='aupr=%0.4f'%aupr)
plt.title("PR Curve")
plt.legend()
plt.savefig("demo_pr.png",dpi=600)
plt.show()

本篇博文,首发在AIexplore微信公众号,内容总体相同,均为原创,特此申明。

参考资料

[1] https://www.cnblogs.com/hellojiaojiao/p/10755878.html
[2] https://zhuanlan.zhihu.com/p/361214293
[3] https://www.lmlphp.com/user/16834/article/item/504015/
[4] https://stackoverflow.com/questions/46943314/xgboost-plot-importance-doesnt-show-feature-names

这篇关于【解决方案】成功解决将XGBoost中plot_importance绘图时出现的f0、f1、f2、f3、f4、f5等改为对应特征的字段名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247705

相关文章

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Java.lang.InterruptedException被中止异常的原因及解决方案

《Java.lang.InterruptedException被中止异常的原因及解决方案》Java.lang.InterruptedException是线程被中断时抛出的异常,用于协作停止执行,常见于... 目录报错问题报错原因解决方法Java.lang.InterruptedException 是 Jav

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

kkFileView在线预览office的常见问题以及解决方案

《kkFileView在线预览office的常见问题以及解决方案》kkFileView在线预览Office常见问题包括base64编码配置、Office组件安装、乱码处理及水印添加,解决方案涉及版本适... 目录kkFileView在线预览office的常见问题1.base642.提示找不到OFFICE组件

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SpringBoot监控API请求耗时的6中解决解决方案

《SpringBoot监控API请求耗时的6中解决解决方案》本文介绍SpringBoot中记录API请求耗时的6种方案,包括手动埋点、AOP切面、拦截器、Filter、事件监听、Micrometer+... 目录1. 简介2.实战案例2.1 手动记录2.2 自定义AOP记录2.3 拦截器技术2.4 使用Fi

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也