MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析

本文主要是介绍MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官方代码
作者开源的官方代码有一处错误,在代码剖析部分将指出。有人已经在github上提出了issue,作者一直没回应。我也是在阅读代码的时候发现了这个错误。

背景

VOS任务很少有使用自监督的,即在训练中不借助mask,只用frame image来训练。
作者巧妙的在STM的基础上,将value换成frame自身,使用过去帧重构当前帧作为代理任务(proxy),实现自监督的vos。效果还不错,在davis val上是64的J&F。

核心思想

在这里插入图片描述
仍然是采用STM的memory bank的思想。memory的特征和query的特征会使用transform,得到attention map。但不同的是,stm使用的是经过backbone得到的value,而MAST是直接使用raw frame或者mask。如果是训练阶段;使用raw frame,如果是test阶段,直接使用得到的mask。
在训练阶段,使用当前帧的特征作为query,和memory中的key,value是对应时刻的raw frame,直接使用qkv三元组重构出一个新的帧。这个输出又以当前帧为GT,用huber loss优化。整个过程没有使用到mask GT。在测试阶段,直接使用mask代替raw frame,则每次预测得到的都是重构出来的mask,作为当前帧的输出。

细节

颜色空间

作者认为,RGB颜色空间不适合作为输入,因为是重构作为代理任务。用huber loss是直接优化像素距离的。
比如说重构出来的输出的第i个像素,和raw frame的第i 个像素的matching 距离很小,但实际上他们可能是落在不同目标上。则说明,根据颜色匹配来优化网络,不适合推动模型学习语义特性。
作者也否决了随意丢弃一个channel的做法,因为RGB是关联的,可以通过其他两个通道推理得知另一个通道的像素。
作者使用LAB空间,在随机丢弃一个channel。lab空间解耦性较好。
在这里插入图片描述
作者统计了davis数据集的RGB数值和LAB数值的分布图。可以看出RGB是线性相关的。
输入的颜色值不是互相关联的,则网络将被push学习更好的表征,而并非仅仅依赖局部颜色信息。

loss

作为GT,raw frame使用RGB颜色空间。使用smooth l1 loss(huber loss)
在这里插入图片描述

 outputs = F.interpolate(outputs, (h, w), mode='bilinear')loss = F.smooth_l1_loss(outputs*20, tar_y*20, reduction='mean')

获取ROI区域

作者分析了STM的劣势,就是memory bank式的matching,需要的内存和计算量都很大,O(T*H*W*H*W)。
如果先获得了目标的大致位置,每一个pixel需要匹配的数目就会少很多(原始的是T*H*W)。
作者提出了一个两阶段的ROI localization。假设对query的第i个位置 q i q_i qi进行匹配。首先使用一个网格(应用空洞技巧),围绕在key的第i个位置上,得到网络上的特征,和 q i q_i qi做匹配(dot运算),得到的相似性系数直接加权相对坐标(和直推式vos的做法类似),这里是应用soft argmax,得到离第i个位置最相似的offset。
第二步就是围绕新的位置(i+offset),resample出一个小区域,作为需要匹配的对象。
在这里插入图片描述

其他细节

网络使用resnet18,修改stride,最低分辨率为1/4。训练也是先pretrain,在main train,接着dynamic train。

代码剖析

主要看看ROI那步。其他的步骤都很好读
作者先是在init里面设置了两种sampler。第一个是带dilate的,第二种是没有dilation的。前者用于long term的sampler,后者用于short term。

self.correlation_sampler_dilated = [SpatialCorrelationSampler(kernel_size=1,patch_size=self.memory_patch_P,stride=1,padding=0,dilation=1,dilation_patch=dirate) for dirate in range(2,6)]self.correlation_sampler = SpatialCorrelationSampler(kernel_size=1,patch_size=self.P,stride=1,padding=0,dilation=1)

在forward里面,大致有下面几个步骤:

  • 先对long term key进行第一步粗糙采样,得到ROI的位置,然后在截取主要特征作为matching对象得到系数。
  • 在对short term key同样操作
  • 用得到的offset,对raw frames,也截取对应的value。
  • 所有的attention map以及value都齐了,开始使用qkv公式得到输出。
 for searching_index in range(nsearch):  # long term: need dilation##### GET OFFSET HERE.  (b,h,w,2)samplerindex = dirates[searching_index]-2coarse_search_correlation = self.correlation_sampler_dilated[samplerindex](feats_t, feats_r[searching_index])  # b, p, p, h, wcoarse_search_correlation = coarse_search_correlation.reshape(b, self.memory_patch_N, h*w)coarse_search_correlation = F.softmax(coarse_search_correlation, dim=1)coarse_search_correlation = coarse_search_correlation.reshape(b,self.memory_patch_P,self.memory_patch_P,h,w,1)_y, _x = torch.meshgrid(torch.arange(-self.memory_patch_R,self.memory_patch_R+1),torch.arange(-self.memory_patch_R,self.memory_patch_R+1))grid = torch.stack([_x, _y], dim=-1).unsqueeze(-2).unsqueeze(-2)\.reshape(1,self.memory_patch_P,self.memory_patch_P,1,1,2).contiguous().float().to(coarse_search_correlation.device)# 每个query像素在mem bank中的一帧该以哪个位置为中心采样offset0 = (coarse_search_correlation * grid ).sum(1).sum(1) * dirates[searching_index]  # 1,h,w,2col_0 = deform_im2col(feats_r[searching_index], offset0, kernel_size=self.P)  # b,c*N,h*wcol_0 = col_0.reshape(b,c,N,h,w)##corr = (feats_t.unsqueeze(2) * col_0).sum(1)   # (b, N, h, w)corr = corr.reshape([b, self.P * self.P, h * w])corrs.append(corr)
 for ind in range(nsearch, nref):  # short termcorrs.append(self.correlation_sampler(feats_t, feats_r[ind]))_, _, _, h1, w1 = corrs[-1].size()corrs[ind] = corrs[ind].reshape([b, self.P*self.P, h1*w1])

得到T帧的匹配系数的softmax值

  corr = torch.cat(corrs, 1)  # b,nref*N,HWcorr = F.softmax(corr, dim=1)corr = corr.unsqueeze(1)

得到value

im_col0 = [deform_im2col(qr[i], offset0, kernel_size=self.P)  for i in range(nsearch)]# b, 3*N, h*w
im_col1 = [F.unfold(r, kernel_size=self.P, padding=self.R) for r in qr[nsearch:]]
image_uf = im_col0 + im_col1  # memory value list.

得到预测结果

  out = (corr * image_uf).sum(2).reshape([b,qr[0].size(1),h,w])

采用使用的是spatial correlation sapmle,是计算光流的cost valume的重要操作。不知道啥是cost valume可以去知乎搜索一下。作者这里用他是计算 q i q_i qi和在key上以i为中心的网格中被选取的特征的相似度。

所谓的截取,就是已知 q i q_i qi应该在哪个位置截取,就使用grid sample取出来。

这篇关于MAST: A Memory-Augmented Self-Supervised Tracker论文解读和代码剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247398

相关文章

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型