Detectron2安装测试

2023-10-20 11:50
文章标签 安装 测试 detectron2

本文主要是介绍Detectron2安装测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Detectron2安装测试

Detectron2是FAIR开源的基于Pytorch1.3.1的目标检测算法实现.

Detectron2-github

1.Detectron2安装

1.1 安装配置基本环境

可参考项目中的Installtion

  • conda create -n detectron2 python=3.7
  • conda activate detectron2
  • PyTorch 1.3
  • torchvision版本需要和pytorch的版本相适应,可参考 pytorch.org 安装。conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
  • OpenCV, Demo和显示时需要使用, pip install opencv-python
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • pycocotools: pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • GCC >= 4.9

注意:conda安装添加清华源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls yes

1.2 检测coda是否正确安装

运行如下代码,检查cuda安装是否正确

python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'

输出:true /usr/local/cuda,我用的是 cuda10.1

如不是上述输出结果,查看.bashrc环境变量设置是否正确,如下设置:

# vim ~/.bashrc
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:/usr/local/cuda/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/lib
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda/lib64

source .bashrc 使设置的环境变量生效

1.3 detectron2 安装:

git clone https://github.com/facebookresearch/detectron2.git
cd detectron2
python setup.py build develop

2.Detectron2测试

2.1 目标检测

模型提前下载好,存在目录下

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl'

在这里插入图片描述在CPU环境下配置好环境也可以进行测试,可参考Detectron2在CPU上执行出现“ Torch not compiled with CUDA enabled”的错误

2.2 实例分割

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
#下载图片
#wget http://images.cocodataset.org/val2017/000000439715.jpg -O input.jpg
im = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  #模型阈值
#cfg.MODEL.WEIGHTS = "./COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/model_final_f10217.pkl"
predictor = DefaultPredictor(cfg)
outputs = predictor(im)pred_classes = outputs["instances"].pred_classes
pred_boxes = outputs["instances"].pred_boxes#在原图上画出检测结果
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.figure(2)
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述
2.3 关键点检测

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml \--input ceshi/test.jpg ceshi/test1.jpg ceshi/test2.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalogim = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  #模型阈值
#cfg.MODEL.WEIGHTS = "./COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
predictor = DefaultPredictor(cfg)
outputs = predictor(im)pred_classes = outputs["instances"].pred_classes
pred_boxes = outputs["instances"].pred_boxes#在原图上画出检测结果
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.figure(2)
#plt.imshow(v.get_image()[:, :, ::-1])
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述

2.4 全景分割

eg1:

python demo/demo.py  \--config-file /home/**/project/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml \--input ceshi/test.jpg ceshi/test1.jpg ceshi/test2.jpg --output outputs/ \--opts MODEL.WEIGHTS '/home/**/project/detectron2/pre_train_model/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl'

在这里插入图片描述

eg2:

import numpy as np
import cv2 as cv
from PIL import Image
#from matplotlib import pyplot
import matplotlib.pyplot as plt
import random
#from google.colab.patches import cv2_imshowimport detectron2
from detectron2.utils.logger import setup_logger
setup_logger()from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalogim = cv.imread("/home/**/project/detectron2/ceshi/input.jpg")cfg = get_cfg()
cfg.merge_from_file("/home/**/project/detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
cfg.MODEL.WEIGHTS = "/home/**/project/detectron2/pre_train_model/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl"
predictor = DefaultPredictor(cfg)
panoptic_seg, segments_info = predictor(im)["panoptic_seg"]
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
v = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info)
plt.imshow(v.get_image())
plt.show()

在这里插入图片描述

3.感谢

  1. https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md

  2. https://www.aiuai.cn/aifarm1288.html#1.detectron2%E5%AE%89%E8%A3%85

如有错误,请指教。

这篇关于Detectron2安装测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246922

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.