python实现门限回归

2023-10-20 05:10
文章标签 python 实现 回归 门限

本文主要是介绍python实现门限回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

门限回归模型(Threshold Regressive Model,简称TR模型或TRM)的基本思想是通过门限变量的控制作用,当给出预报因子资料后,首先根据门限变量的门限阈值的判别控制作用,以决定不同情况下使用不同的预报方程,从而试图解释各种类似于跳跃和突变的现象。其实质上是把预报问题按状态空间的取值进行分类,用分段的线性回归模式来描述总体非线性预报问题。多元门限回归的建模步骤就是确实门限变量、率定门限数L、门限值及回归系数的过程,为了计算方便,这里采用二分割(即L=2)说明模型的建模步骤。

基本步骤如下(附代码):

1.读取数据,计算预报对象与预报因子之间的互相关系数矩阵。

数据读取
#利用pandas读取csv,读取的数据为DataFrame对象
data = pd.read_csv('jl.csv')
# 将DataFrame对象转化为数组,数组的第一列为数据序号,最后一列为预报对象,中间各列为预报因子
data= data.values.copy()
# print(data)
# 计算互相关系数,参数为预报因子序列和滞时k
def get_regre_coef(X,Y,k):S_xy=0S_xx=0S_yy=0# 计算预报因子和预报对象的均值X_mean = np.mean(X)Y_mean = np.mean(Y)for i in  range(len(X)-k):S_xy += (X[i] - X_mean) * (Y[i+k] - Y_mean)for i in range(len(X)):S_xx += pow(X[i] - X_mean, 2)S_yy += pow(Y[i] - Y_mean, 2)return S_xy/pow(S_xx*S_yy,0.5)
#计算相关系数矩阵
def regre_coef_matrix(data):row=data.shape[1]#列数r_matrix=np.ones((1,row-2))# print(row)for i in range(1,row-1):r_matrix[0,i-1]=get_regre_coef(data[:,i],data[:,row-1],1)#滞时为1return r_matrix
r_matrix=regre_coef_matrix(data)
# print(r_matrix)
###输出###
#[[0.048979   0.07829989 0.19005705 0.27501209 0.28604638]]

 2.对相关系数进行排序,相关系数最大的因子作为门限元。

#对相关系数进行排序找到相关系数最大者作为门限元
def get_menxiannum(r_matrix):row=r_matrix.shape[1]#列数for i in range(row):if r_matrix.max()==r_matrix[0,i]:return i+1return -1
m=get_menxiannum(r_matrix)
# print(m)
##输出##第五个因子的互相关系数最大
#5

3.根据选取的门限元因子对数据进行重新排序。

#根据门限元对因子序列进行排序,m为门限变量的序号
def resort_bymenxian(data,m):data=data.tolist()#转化为列表data.sort(key=lambda x: x[m])#列表按照m+1列进行排序(升序)data=np.array(data)return data
data=resort_bymenxian(data,m)#得到排序后的序列数组

4.将排序后的序列按照门限元分割序列为两段,第一分割第一段1个数据,第二段n-1(n为样本容量)个数据;第二次分割第一段2个数据,第二段n-2个数据,一次类推,分别计算出分割后的F统计量并选出最大统计量对应的门限元的分割点作为门限值。

def get_var(x):return x.std() ** 2 * x.size  # 计算总方差
#统计量F的计算,输入数据为按照门限元排序后的预报对象数据
def get_F(Y):col=Y.shape[0]#行数,样本容量FF=np.ones((1,col-1))#存储不同分割点的统计量V=get_var(Y)#计算总方差for i in range(1,col):#1到col-1S=get_var(Y[0:i])+get_var(Y[i:col])#计算两段的组内方差和F=(V-S)*(col-2)/SFF[0,i-1]=F#此步需要判断是否通过F检验,通过了才保留F统计量return FF
y=data[:,data.shape[1]-1]
FF=get_F(y)
def get_index(FF,element):#获取element在一维数组FF中第一次出现的索引i=-1for item in FF.flat:i+=1if item==element:return i
f_index=get_index(FF,np.max(FF))#获取统计量F的最大索引
# print(data[f_index,m-1])#门限元为第五个因子,代入索引得门限值 121

5.以门限值为分割点将数据序列分割为两段,分别进行多元线性回归,此处利用sklearn.linear_model模块中的线性回归模块。再代入预报因子分别计算两段的预测值。

#以门限值为分割点将新data序列分为两部分,分别进行多元回归计算
def data_excision(data,f_index):f_index=f_index+1data1=data[0:f_index,:]data2=data[f_index:data.shape[0],:]return data1,data2
data1,data2=data_excision(data,f_index)
# 第一段
def get_XY(data):# 数组切片对变量进行赋值Y = data[:, data.shape[1] - 1]  # 预报对象位于最后一列X = data[:, 1:data.shape[1] - 1]#预报因子从第二列到倒数第二列return X, Y
X,Y=get_XY(data1)
regs=LinearRegression()
regs.fit(X,Y)
# print('第一段')
# print(regs.coef_)#输出回归系数
# print(regs.score(X,Y))#输出相关系数
#计算预测值
Y1=regs.predict(X)
# print('第二段')
X,Y=get_XY(data2)
regs.fit(X,Y)
# print(regs.coef_)#输出回归系数
# print(regs.score(X,Y))#输出相关系数
#计算预测值
Y2=regs.predict(X)
Y=np.column_stack((data[:,0],np.hstack((Y1,Y2)))).copy()
Y=np.column_stack((Y,data[:,data.shape[1]-1]))
Y=resort_bymenxian(Y,0)

6.将预测值和实际值按照年份序号从新排序,恢复其顺序,利用matplotlib模块做出预测值与实际值得对比图。

#恢复顺序
Y=resort_bymenxian(Y,0)
# print(Y.shape)
# 预测结果可视化
plt.plot(Y[:,0],Y[:,1],'b--',Y[:,0],Y[:,2],'g')
plt.title('Comparison of predicted and measured values',fontsize=20,fontname='Times New Roman')#添加标题
plt.xlabel('Years',color='gray')#添加x轴标签
plt.ylabel('Average traffic in December',color='gray')#添加y轴标签
plt.legend(['Predicted values','Measured values'])#添加图例
plt.show()

结果图:

所用数据:引自《现代中长期水文预报方法及其应用》汤成友 官学文 张世明 著

numx1x2x3x4x5y
196030830135231014980.5
19611821861651277042.9
1962195134134976143.9
196313637833430714887.4
196423063033216110066.6
196522533320936515282.9
1966296225317527228111
196732422917631715379.3
196827823035231714382
1969662442453381188103
197018713610312974.743
197128440460032716192.2
1972427430843448236144
197325840463927515698.9
197411316012817777.250.1
197514330033321410663
19761137419324110758.6
19772041401549055.140.2
197817444535126712070.3
1979939519721494.964.3
198021425035438517873
198123267648321811372.6
198226621614611282.861.4
1983210433803301166115
198426170251229115397.5
198519717823818094.258.9
198644225662331014684.3
19871369925323211462
198825622618532115180.1
198947340930029814179.6
199027729163930214984.6
199137218117410468.858.4
19922511421269559.451.4
199318112513024012164
199425327821618212482.4
199516821426517510168.1
199698.89792.78856.745.6
199725238531327011978.8
199824219813711471.951.8
199926817812710968.653.3
200086.228623313377.858.6
20011501681229362.842.9
200218015097.87848.241.9
20031662031661247053.7
200440020212615892.754.7
200579.882.612916076.653.7

 

这篇关于python实现门限回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/244888

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法