caffe专题二图像生成lmdb文件-sh实现

2023-10-20 00:48

本文主要是介绍caffe专题二图像生成lmdb文件-sh实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://www.cnblogs.com/darkknightzh/p/5909121.html

参考网址:

http://www.cnblogs.com/wangxiaocvpr/p/5096265.html

可以根据caffe-master\examples\imagenet \readme.md进行理解。

1 生成LmDB格式文件

caffe中通过图像生成lmdb格式文件的程序为examples/imagenet/create_imagenet.sh。该文件调用build/tools/convert_imageset(对应的源码为tools/convert_imageset.cpp)。

为了不改变原来的程序,在examples内新建testCreateLmDB文件夹。新建create_imagenet.sh,并输入:


#!/usr/bin/env sh
# Create the imagenet lmdb inputs
# N.B. set the path to the imagenet train + val data dirsset -eEXAMPLE=examples/testCreateLmDB
DATA=/home/xxx/database/CASIA
TOOLS=build/toolsTRAIN_DATA_ROOT=/home/xxx/database/CASIA/
VAL_DATA_ROOT=/home/xxx/database/CASIA/# Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; thenRESIZE_HEIGHT=128RESIZE_WIDTH=128
elseRESIZE_HEIGHT=0RESIZE_WIDTH=0
fiif [ ! -d "$TRAIN_DATA_ROOT" ]; thenecho "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \"where the ImageNet training data is stored."exit 1
fiif [ ! -d "$VAL_DATA_ROOT" ]; thenecho "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \"where the ImageNet validation data is stored."exit 1
fiecho "Creating train lmdb..."GLOG_logtostderr=1 $TOOLS/convert_imageset \--resize_height=$RESIZE_HEIGHT \--resize_width=$RESIZE_WIDTH \--shuffle \$TRAIN_DATA_ROOT \$DATA/train_all.txt \$EXAMPLE/face_train_lmdbecho "Creating val lmdb..."#GLOG_logtostderr=1 $TOOLS/convert_imageset \#   --resize_height=$RESIZE_HEIGHT \#   --resize_width=$RESIZE_WIDTH \
#    --shuffle \
#    $VAL_DATA_ROOT \
#    $DATA/val.txt \#   $EXAMPLE/face_val_lmdbecho "Done."

之后,在caffe根目录打开终端,并输入sh examples/testCreateLmDB/create_imagenet.sh

说明:

1) 程序第6行EXAMPLE为当前文件在caffe目录的相对路径。

2) 程序第7行DATA为train_all.txt所在的文件夹(如果train_all.txt就在TRAIN_DATA_ROOT文件夹内,则DATA和TRAIN_DATA_ROOT一样),如下图:

其中第一列为数据库中所有文件的文件名相对于数据库目录的位置,第二列为图像类别。

3) 第10行TRAIN_DATA_ROOT为训练数据的绝对路径。

4) 第11行VAL_DATA_ROOT为验证数据的绝对路径。

5) 程序第15行RESIZE为是否对图像进行缩放。如果直接读图像的话,可以使用

new_height: 128

new_width: 128

进行缩放。但是使用lmdb的话,貌似没办法在prototxt里面设置缩放,只能在创建lmdb数据库时,进行缩放。缩放时,更改程序17、18行的RESIZE_HEIGHT和RESIZE_WIDTH。经测试,如果不缩放的话,生成数据库大小为28.2G,缩放后,生成数据库大小为21.2G(此处和图像具体大小有关,给出数据只为了说明缩放应该在哪里设置。)

6. 程序第46行EXAMPLE/face_train_lmdb为生成的LmDB文件所在的路径。注意:EXAMPLE/oriface_train_lmdb文件夹最好为空,或者删除该文件夹,否则可能会提示:


2 生成mean.binaryproto文件

为了不更改源文件,在testCreateLmDB内新建make_imagenet_mean.sh,并输入:

#!/usr/bin/env sh
# Compute the mean image from the imagenet training lmdb
# N.B. this is available in data/ilsvrc12EXAMPLE=examples/testCreateLmDB
DATA=examples/testCreateLmDB
TOOLS=build/tools$TOOLS/compute_image_mean $EXAMPLE/face_train_lmdb \$DATA/face_train_mean.binaryprotoecho "Done."

说明:

1) 程序第3行EXAMPLE为当前程序所在目录(实际上为face_train_lmdb库文件所在目录。见第9行)。

2) 程序第4行DATA为需要生成的face_train_mean.binaryproto所在目录(见程序第10行)。

3) 生成的face_train_mean.binaryproto文件大小为192KB。




这篇关于caffe专题二图像生成lmdb文件-sh实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243504

相关文章

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图