caffe专题二将图像写入LMDB与读取LMDB—python实现

2023-10-20 00:48

本文主要是介绍caffe专题二将图像写入LMDB与读取LMDB—python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:https://blog.csdn.net/langb2014/article/details/52995349    大牛的文章啊,学习了

调用的是caffe的python接口

一:将图像写入LMDB

import os
import glob
import random
import numpy as npimport cv2import caffe
from caffe.proto import caffe_pb2
import lmdb#Size of images
IMAGE_WIDTH = 227
IMAGE_HEIGHT = 227# train_lmdb、validation_lmdb 路径
train_lmdb = '/xxxxx/train_lmdb'
validation_lmdb = '/xxxxx/validation_lmdb'# 如果存在了这个文件夹, 先删除
os.system('rm -rf  ' + train_lmdb)
os.system('rm -rf  ' + validation_lmdb)# 读取图像
train_data = [img for img in glob.glob("/xxx/*jpg")]
test_data = [img for img in glob.glob("/xxxx/*jpg")]# Shuffle train_data
# 打乱数据的顺序
random.shuffle(train_data)# 图像的变换, 直方图均衡化, 以及裁剪到 IMAGE_WIDTH x IMAGE_HEIGHT 的大小
def transform_img(img, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT):#Histogram Equalizationimg[:, :, 0] = cv2.equalizeHist(img[:, :, 0])img[:, :, 1] = cv2.equalizeHist(img[:, :, 1])img[:, :, 2] = cv2.equalizeHist(img[:, :, 2])#Image Resizing, 三次插值img = cv2.resize(img, (img_width, img_height), interpolation = cv2.INTER_CUBIC)return imgdef make_datum(img, label):#image is numpy.ndarray format. BGR instead of RGBreturn caffe_pb2.Datum(channels=3,width=IMAGE_WIDTH,height=IMAGE_HEIGHT,label=label,data=np.rollaxis(img, 2).tobytes()) # or .tostring() if numpy < 1.9# 打开 lmdb 环境, 生成一个数据文件,定义最大空间, 1e12 = 1000000000000.0
in_db = lmdb.open(train_lmdb, map_size=int(1e12)) 
with in_db.begin(write=True) as in_txn: # 创建操作数据库句柄for in_idx, img_path in enumerate(train_data):if in_idx %  6 == 0: # 只处理 5/6 的数据作为训练集continue         # 留下 1/6 的数据用作验证集# 读取图像. 做直方图均衡化、裁剪操作img = cv2.imread(img_path, cv2.IMREAD_COLOR)img = transform_img(img, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT)if 'cat' in img_path: # 组织 label, 这里是如果文件名称中有 'cat', 标签就是 0label = 0         # 如果图像名称中没有 'cat', 有的是 'dog', 标签则为 1else:                 # 这里方, label 需要自己去组织label = 1         # 每次情况可能不一样, 灵活点datum = make_datum(img, label)# '{:0>5d}'.format(in_idx):#      lmdb的每一个数据都是由键值对构成的,#      因此生成一个用递增顺序排列的定长唯一的keyin_txn.put('{:0>5d}'.format(in_idx), datum.SerializeToString()) #调用句柄,写入内存print '{:0>5d}'.format(in_idx) + ':' + img_path# 结束后记住释放资源,否则下次用的时候打不开。。。
in_db.close() # 创建验证集 lmdb 格式文件
print '\nCreating validation_lmdb'
in_db = lmdb.open(validation_lmdb, map_size=int(1e12))
with in_db.begin(write=True) as in_txn:for in_idx, img_path in enumerate(train_data):if in_idx % 6 != 0:continueimg = cv2.imread(img_path, cv2.IMREAD_COLOR)img = transform_img(img, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT)if 'cat' in img_path:label = 0else:label = 1datum = make_datum(img, label)in_txn.put('{:0>5d}'.format(in_idx), datum.SerializeToString())print '{:0>5d}'.format(in_idx) + ':' + img_path
in_db.close()
print '\nFinished processing all images'

二:配置文件中使用proto

layer {top: "data"top: "label"name: "data"type: "Data"data_param {source: "/xxxxx/train_lmdb"backend:LMDBbatch_size: 128}transform_param {#mean_file: "/xxxxx/mean.binaryproto"mirror: true}include: { phase: TRAIN }
}

三:读取proto数据

import caffe
from caffe.proto import caffe_pb2import lmdb
import cv2
import numpy as nplmdb_env = lmdb.open('mylmdb', readonly=True) # 打开数据文件
lmdb_txn = lmdb_env.begin() # 生成处理句柄
lmdb_cursor = lmdb_txn.cursor() # 生成迭代器指针
datum = caffe_pb2.Datum() # caffe 定义的数据类型for key, value in lmdb_cursor: # 循环获取数据datum.ParseFromString(value) # 从 value 中读取 datum 数据label = datum.labeldata = caffe.io.datum_to_array(datum)print data.shapeprint datum.channelsimage = data.transpose(1, 2, 0)cv2.imshow('cv2.png', image)cv2.waitKey(0)cv2.destroyAllWindows()
lmdb_env.close()

Caffe多标签输入常用的的方法有以下几种:
1. 修改Caffe源码使其支持多标签输入,参考CSDN博客
《caffe 实现多标签输入(multilabel、multitask)》
2. HDF5 + Slice Layer,HDF5支持多标签,但Caffe在读取HDF5时会将所有数据一次性预读进内存中,在数据量较大时就对内存有较高要求了;也可以对数据分片,通过在prototxt文件中加入Slice Layer层使Caffe依次读取每个数据分片。
3. 使用两个data输入(例如两个LMDB,一个存储图片,一个存储多标签),然后修改prototxt文件配置两个data layer。

实现第三种方法支持多标签输入。Caffe中单标签LMDB的创建可以通过自带的脚本很方便的实现,但多标签LMDB的创建并不像单标签那样简单易用,需要使用者对Caffe的Data Layer有足够的了解。

多标签的场景下,数据是 N x H x W x C 的一个4维的blob,对应的标签是 N x M x 1 x 1的一个4维的blob。

创建图片LMDB

使用下面的代码创建两个图片LMDB:
- train_data_lmdb - 用于训练的图片LMDB 
- val_data_lmdb - 用于测试的图片LMDB

# 生成训练图片列表文件,即将tarin_images_dir目录下所有图片的路径写入temp.txt文件
find tarin_images_dir -type f -exec echo {} \; > temp.txt# 在temp.txt文件中每一行后追加伪标签,伪标签起占位符作用,实际并不使用 
sed "s/$/ 0/" temp.txt > train_images.txt# 根据train_images.txt创建train_data_lmdb
$CAFFE_HOME/build/tools/convert_imageset -resize_height=256 -resize_width=256 / train_images.txt train_data_lmdb# 计算图片均值
$CAFFE_HOME/build/tools/compute_image_mean train_data_lmdb mean.binaryproto

上面的代码用来生成train_data_lmdb,接下来修改代码生成val_data_lmdb.
创建标签LMDB使用下面的代码创建两个标签LMDB:
- train_label_lmdb - 用于训练的标签LMDB 
- val_label_lmdb - 用于测试的标签LMDB读入每幅图片的多标签,生成标签LMDB,注意图片LMDB和标签LMDB中的顺序一致,创建LMDB的部分Python
代码如下:
import sys 
import numpy as np
import lmdbcaffe_root = '/caffe/' 
sys.path.insert(0, caffe_root + 'python')
import caffe# 根据多标签的位置选择从数据库、文件等中读取每幅图片的多标签,将其构造成一维的np.array类型,并追加入all_labels列表
all_labels = []
# Add your code of reading labels here !# 创建标签LMDB
key = 0
lmdb_path = "/train_label_lmdb"
env = lmdb.open(lmdb_path, map_size=map_size)
with env.begin(write=True) as txn: for labels in all_labels:datum = caffe.proto.caffe_pb2.Datum()datum.channels = labels.shape[0]datum.height = 1datum.width =  1datum.data = labels.tostring()          # or .tobytes() if numpy < 1.9 datum.label = 0key_str = '{:08}'.format(key)txn.put(key_str.encode('ascii'), datum.SerializeToString())key += 1

上面的代码用来生成train_label_lmdb,接下来修改代码生成val_label_lmdb.

修改prototxt文件

上面我们已经创建了四个数据集train_data_lmdb、val_data_lmdb、train_label_lmdb、val_label_lmdb,并且计算了图片均值mean.binaryproto。

接下来就是修改神经网络deploy.prototxt使其支持多标签训练。由于有四个数据集,我们只需要在deploy.txt中加入四个data layers,分别用来配置这四个数据集。需要注意的是在标签lmdb对应的data layer的参数transform_param中通过scaling参数对label进行缩放,该操作的作用是按照Sigmoid Cross Entropy Loss函数的要求将label范围从[0,255]正则化到[0,1](根据采用的多标签Loss函数的要求,scaling参数可以修改)。

将deploy.prototxt中原有的data layers修改为如下的四个data layers:

# ------------- 配置训练阶段的图片数据集 ----------------
layers {name: "data"type: DATAtop: "data"include {phase: TRAIN}transform_param {mirror: truecrop_size: 224mean_file: "data.binaryproto"    # 修改为你的均值文件路径}data_param {source: "train_data_lmdb"        # 修改为你的图片lmdb路径batch_size: 32backend: LMDB}
}# ------------- 配置训练阶段的标签数据集 ----------------
layers {name: "data"type: DATAtop: "label"include {phase: TRAIN}transform_param {scale: 0.00390625                 # 根据需求设置标签缩放系数mean_value: 0}data_param {source: "train_label_lmdb"        # 修改为训练集图片lmdb路径batch_size: 32backend: LMDB}
}# ------------- 配置测试阶段的图片数据集 ----------------
layers {name: "data"type: DATAtop: "data"include {phase: TEST}transform_param {mirror: falsecrop_size: 224mean_file: "mean.binaryproto"      # 修改为你的均值文件路径}data_param {source: "val_data_lmdb"            # 修改为训练阶段的图片lmdb路径batch_size: 1backend: LMDB}
}# ------------- 配置测试阶段的标签数据集 ----------------
layers {name: "data"type: DATAtop: "label"include {phase: TEST}transform_param {scale: 0.00390625                  # 根据需求设置标签缩放系数mean_value: 0}data_param {source: "val_label_lmdb"           # 修改为测试阶段的标签lmdb路径batch_size: 1backend: LMDB}
}......# ----------------- 多标签损失函数  -------------------
layers {name: "loss"type: SIGMOID_CROSS_ENTROPY_LOSSbottom: "fc8"                       # 根据需求配置bottom: "label"top: "loss"
}








这篇关于caffe专题二将图像写入LMDB与读取LMDB—python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243503

相关文章

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐