求子数组问题

2023-10-20 00:38
文章标签 问题 数组 求子

本文主要是介绍求子数组问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

子数组问题分为三类:

1:连续子数组

2:非连续子数组

3:可连续也可以不连续

这三类问题的解决办法一般都是循环或者动态规划,尝试了dfs算法,结果把自己给绕进去了!

 

一:最大升序问题(属于第三类)

参考:https://www.cnblogs.com/lerongwei/p/4890633.html

1:动态规划解法:

利用动态规划来做,假设数组为1, -1, 2, -3, 4, -5, 6, -7。我们定义LIS[N]数组,其中LIS[i]用来表示以array[i]为最后一个元素的最长递增子序列。
使用i来表示当前遍历的位置:
当i = 0 时,显然,最长的递增序列为(1),则序列长度为1。则LIS[0] = 1
当i = 1 时,由于-1 < 1,因此,必须丢弃第一个值,然后重新建立序列。当前的递增子序列为(-1),长度为1。则LIS[1] = 1
当i = 2 时,由于2 > 1,2 > -1。因此,最长的递增子序列为(1, 2),(-1, 2),长度为2。则LIS[2] = 2。
当i = 3 时,由于-3 < 1, -1, 2。因此,必须丢掉前面的元素,重建建立序列。当前的递增子序列为(-3),长度为1。则LIS[3] = 1。
依次类推之后,可以得出如下结论。
LIS[i] = max{1, LIS[k] + 1}, array[i] >array[k], for any k < i
最后,我们取max{Lis[i]}。

#include<stdio.h>
#include<iostream>
using namespace std;
void FindLongestAscSequence( int *input,int size){
    int *list = new int[size];// 用来存储以第i个元素结尾的最长递增子序列
    int *sum  = new int[size]; // 用来存储以第i个元素结尾的最长递增子序列的和
    int MaxLen = 1;
    int maxsum =0;
    int k = 0;
    for (int i = 0; i < size; i++){
         list[i] = 1 ;
         sum[i] = input[i]; //初始为
        for ( int j = 0; j < i; j++){
            if ((input[i] > input[j]) && (list[j] + 1 > list[i]) )
                   list[i] = list[j] + 1;
            if ((input[i] > input[j]) && (sum[j] + input[i] > sum[i]) )
                   sum[i] = sum[j] + input[i];
                   
        }
        if (MaxLen < list[i]){
            MaxLen = list[i];
        }
        if (maxsum < sum[i])
        {
            maxsum = sum[i];
        }
    }
    cout<<MaxLen << ' '<< maxsum << endl;
}

int main(){
    int test1[] = {5,1,3,4,9,7,6,8};
    int test2[] = {1,2,3,4,5,6};
    int test3[] = {6,5,4,3,2,1};
    FindLongestAscSequence(test1,8);
    FindLongestAscSequence(test2,6);
    FindLongestAscSequence(test3,6);
    return 0;
}

这个通用解法可以实现求最大子数组的长度和求和问题。网上还有一种循环的解法但是没有回溯,得到的结果并不是我我们想要的额!

#include<stdio.h>
#include<iostream>
using namespace std;
void FindGreatestAddOfSubArrey(int *input,int size){
    int *result = new int[size];
    int *pre = new int[size];
    int k,MaxLen = 0;
    for (int len = 0; len < size; len++){
         int temp = input[len];
         int cnt = 0;
         pre[0] = input[len];
         for(int end = len + 1; end < size; end++){
            if (input[end] > temp){
                temp = input[end];
                pre[++cnt] = temp;
            }
        }
        if (cnt >= MaxLen){
            k = 0;
            MaxLen = cnt;
            while(k <= cnt){
                result[k] = pre[k];
                k++;
            }
        }
    }
    cout<<MaxLen+1<<endl;
    for(int i = 0;i < k; i++)
        cout<<result[i]<<" ";
    cout<<endl;
}

int main(){
    int test1[] = {5,1,3,4,9,7,6,8};
    int test2[] = {1,2,3,4,5,6};
    int test3[] = {6,5,4,3,2,1};
    FindGreatestAddOfSubArrey(test1,8);
    FindGreatestAddOfSubArrey(test2,6);
    FindGreatestAddOfSubArrey(test3,6);
    return 0;
}

 

二:数组非连续子序列的最大和

动态规划:找递推关系式!

从《编程之美》一题中得到启发,我们是不是也可以用动态规划的方法来解这道题呢?假设从原数组a第i位开始的最大不连续子数组和为m[ i ],那么它的值有两种可能,一种是当前元素a[ i ]与隔一位上子问题解m[ i+2 ]之和(由不连续性质决定),另一种是不包含当前元素而直接等于前一位上子问题解m[ i+1 ],那么我们可以写出递推公式为:m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])。
等等,也许你要说,好像这个递推式有漏洞啊,因为前一位上的解m[ i+1 ]本身就有可能是包含或不包含a[ i+1 ],假如m[ i+1 ]不包含a[ i+1 ],那么岂不是还要考虑a[ i ]+m[ i+1 ]这种可能性呢?
这个递推式真的经不起推敲吗?我们不妨重新整理一下思路:由于原数组上每一元素都有取与不取两种可能,那么也就对应有包含和不包含该元素的两个子数组的最大和。对于原数组a中第i位上的元素,假设包含a[ i ]元素的子数组最大和为s[ i ],而不包含元素a[ i ]的子数组最大和为ns[ i ],因此所要求的不连续子数组最大和m[ i ] = max(s[ i ], ns[ i ])。那么根据题意我们可以整理出递推关系如下:
s[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ])
ns[ i ] = m[ i+1 ]
m[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ], m[ i+1 ])
有趣的地方在于ns[ i ] = m[ i+1 ]这一项上,根据它我们可以得到ns[ i+1 ] = m(i+2),也就是说假如m[ i+1 ]不包含a[ i+1 ]的话,那么它一定等于m[ i+2 ],所以a[ i ]+ns[ i+1 ]等价于a[ i ] + m[ i+2 ],递推式m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])是正确的!
从《编程之美》给出的解法中得到启发,我们也只需要使用两个变量来记录m[ i+2 ]和m[ i+1 ]的值就行了,而且同样只需要O(N)的复杂度就可以解这道题,代码如下:


    

#include<stdio.h>
#include<iostream>
using namespace std;
static int max(int a,int b)
{
    return a > b? a: b;
}

    int maxSubSum(int a[] , const int len)
    {

       a[1] = max(a[1],a[0]);

       for (int i = 2; i < len; i++) {

           a[i]= max( max(a[i],a[i-1]),a[i-2]+a[i]);

        }
        return a[len-1];
    }
    
    //编程之美的解法
    int maxsum(int* a, int n)
    {
        int m2 = 0;
        int m1 = a[ n-1 ];
        for(int i = n - 2; i >= 0; i--)
        {
        if(m2 < 0) m2 = 0; //处理最后一位为负数或全为负数的情况
        int tmp = m1;
        m1 = max(a[ i ] + m2, m1);
        m2 = tmp;
        }
        return m1;
    }
            
    
     int main( )
     {

        int a[]= {2,-3,3,50};

        int b[]= {-2,-3,3,50,1,-1,100};

        int result_a = maxSubSum(a,4);

        int result_b = maxsum(b,7);

        cout << result_a << endl;
        cout << result_b << endl;
        return 0;

      }
     

 

这篇关于求子数组问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243453

相关文章

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co