数学笔记——直角坐标方程转参数方程

2023-10-19 16:52

本文主要是介绍数学笔记——直角坐标方程转参数方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 背景
    • 第一步,原式转换成参数方程
    • 第二步,将参数方程绕x轴旋转一周
    • 结果程序与图形

背景

学习matlab三维作图时遇到的一道题,搞不懂为什么要将直角方程转换成参数方程,在经过多次直角作图失败后,还是决定老老实实学下怎么将直角方程转参数方程,然后使用参数方程进行三维作图。

原式: x 2 + ( y − 5 ) 2 = 16 x^2 + (y-5)^2 = 16 x2+(y5)2=16

需求:将求得原式绕x轴旋转一周所形成的旋转曲面方程。

思路:将原式转换成参数方程,再进行旋转操作。

第一步,原式转换成参数方程

给定圆的方程 x 2 + ( y − 5 ) 2 = 16 x^2 + (y - 5)^2 = 16 x2+(y5)2=16,我们可以将其转化为极坐标形式:
x = r c o s θ x = rcosθ x=rcosθ
y − 5 = r s i n θ y - 5 = rsinθ y5=rsinθ
其中, r r r为极径, θ θ θ为极角。

y − 5 = r s i n θ y - 5 = rsinθ y5=rsinθ代入 x 2 + ( y − 5 ) 2 = 16 x^2 + (y - 5)^2 = 16 x2+(y5)2=16中,得到:
x 2 + ( r s i n θ ) 2 = 16 x^2 + (rsinθ)^2 = 16 x2+(rsinθ)2=16

化简后得到:
x 2 + r 2 s i n 2 θ = 16 x^2 + r^2sin^2θ = 16 x2+r2sin2θ=16

再将 x = r c o s θ x = rcosθ x=rcosθ代入,得到:
( r c o s θ ) 2 + r 2 s i n 2 θ = 16 (rcosθ)^2 + r^2sin^2θ = 16 (rcosθ)2+r2sin2θ=16

化简后得到:
r 2 ( c o s 2 θ + s i n 2 θ ) = 16 r^2(cos^2θ + sin^2θ) = 16 r2(cos2θ+sin2θ)=16

由于 c o s 2 θ + s i n 2 θ = 1 cos^2θ + sin^2θ = 1 cos2θ+sin2θ=1
所以: r 2 = 16 r^2 = 16 r2=16
解得 r = 4 r = 4 r=4
因此,圆的极径 r r r为4。

r = 4 r = 4 r=4代入 x = r c o s θ x = rcosθ x=rcosθ y − 5 = r s i n θ y - 5 = rsinθ y5=rsinθ中,得到圆的参数方程:
x = 4 c o s θ x = 4cosθ x=4cosθ
y = 5 + 4 s i n θ y = 5 + 4sinθ y=5+4sinθ
z = 0 z = 0 z=0

这样,我们就得到了圆的参数方程。通过调整 θ θ θ的取值,可以得到圆上的不同点的坐标。

第二步,将参数方程绕x轴旋转一周

如果将该圆曲面绕x轴旋转一周,可以得到一个旋转体,即一个圆柱体。
对于圆的参数方程 x = 4 c o s θ , y = 5 + 4 s i n θ , z = 0 x = 4cosθ,y = 5 + 4sinθ,z = 0 x=4cosθy=5+4sinθz=0,我们将z坐标保持不变,即 z = 0 z = 0 z=0。然后,将 x x x y y y坐标分别替换为 x ′ x' x y ′ y' y,表示旋转后的坐标。
对于旋转体的参数方程,我们可以使用极坐标的旋转公式来推导。
x ′ = x x' = x x=x
y ′ = y c o s φ − z s i n φ y' = ycosφ - zsinφ y=ycosφzsinφ
z ′ = y s i n φ + z c o s φ z' = ysinφ + zcosφ z=ysinφ+zcosφ
其中, φ φ φ为旋转角度。

对于绕x轴旋转一周,我们可以令 φ = θ φ = θ φ=θ,即旋转角度等于极角。
x = 4 c o s θ , y = 5 + 4 s i n θ , z = 0 x = 4cosθ,y = 5 + 4sinθ,z = 0 x=4cosθy=5+4sinθz=0代入旋转公式,得到:
x ′ = 4 c o s θ x' = 4cosθ x=4cosθ
y ′ = ( 5 + 4 s i n θ ) c o s θ y' = (5 + 4sinθ)cosθ y=(5+4sinθ)cosθ
z ′ = ( 5 + 4 s i n θ ) s i n θ z' = (5 + 4sinθ)sinθ z=(5+4sinθ)sinθ

这样,我们就得到了旋转体(圆柱体)的参数方程:
x ′ = 4 c o s θ x' = 4cosθ x=4cosθ
y ′ = ( 5 + 4 s i n θ ) c o s θ y' = (5 + 4sinθ)cosθ y=(5+4sinθ)cosθ
z ′ = ( 5 + 4 s i n θ ) s i n θ z' = (5 + 4sinθ)sinθ z=(5+4sinθ)sinθ

这个参数方程描述了绕x轴旋转一周后的曲面的形状。

结果程序与图形

alpha = [0:0.1:2*pi]‘;beta = 0:0.1:2*pi;
x = 4*cos(alpha)*ones(size(beta));
y = (5 + 4*sin(alpha))*cos(beta);
z = (5 + 4*sin(alpha)) * sin(beta);
surf(x,y,z)

在这里插入图片描述

计算内容主要还是套各种公式,以前的知识点还是需要补一下的。

以上过程均来自AI,此内容仅作本人学习记录使用。

这篇关于数学笔记——直角坐标方程转参数方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/241115

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

SpringBoot接收JSON类型的参数方式

《SpringBoot接收JSON类型的参数方式》:本文主要介绍SpringBoot接收JSON类型的参数方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、jsON二、代码准备三、Apifox操作总结一、JSON在学习前端技术时,我们有讲到过JSON,而在