深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。

2023-10-19 16:04

本文主要是介绍深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习中常用的激活函数

  • 1. Sigmoid函数
  • 2. Tanh函数
  • 3. ReLU函数
  • 4. LeakyReLU函数
  • 5. PReLU函数
  • 6. ELU函数:
  • 7. GELU函数:

深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU等。

1. Sigmoid函数

Sigmoid函数公式为 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1,它的输出值在[0,1]之间,可以用来解决二元分类问题。它的主要特点是它是可导的,并且输出值可以被解释为概率。但是,如果输入值过大或过小,会导致梯度消失问题,对于较深的神经网络来说不太适用。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))return x

2. Tanh函数

Tanh函数公式为 f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex,它的输出值在[-1,1]之间,可以用来解决回归问题。与sigmoid不同的是,它的输出是以0为中心的,因此幂次大的输入值仍然会导致梯度消失问题。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.tanh(self.fc1(x))x = F.tanh(self.fc2(x))return x

3. ReLU函数

ReLU函数公式为 f ( x ) = m a x ( 0 , x ) f(x)=max(0, x) f(x)=max(0,x),它的输出值在[0,无穷)之间,可以用来解决分类和回归问题。它有以下优点:1)解决了梯度消失问题;2)计算速度快。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))return x

4. LeakyReLU函数

LeakyReLU函数公式为 f ( x ) = m a x ( 0.01 x , x ) f(x)=max(0.01x, x) f(x)=max(0.01x,x),它的输出值在(-无穷,无穷)之间,是ReLU的改进版。在输入值为负数时,它不是完全为0,而是有一个小的斜率,可以避免神经元死亡。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.LeakyReLU = nn.LeakyReLU(0.01)def forward(self, x):x = self.LeakyReLU(self.fc1(x))x = self.LeakyReLU(self.fc2(x))return x

5. PReLU函数

PReLU函数公式为:

f ( x ) = { x , if  x > 0 α x , otherwise f(x) = \begin{cases} x, & \text{if $x > 0$}\\ \alpha x, & \text{otherwise} \end{cases} f(x)={x,αx,if x>0otherwise

其中 α \alpha α 是可学习的参数,它的输出值在(-无穷,无穷)之间,是LeakyReLU的改进版。与LeakyReLU不同的是, α \alpha α 不是固定的,而是可以根据训练数据自适应调节。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.PReLU = nn.PReLU()def forward(self, x):x = self.PReLU(self.fc1(x))x = self.PReLU(self.fc2(x))return x

6. ELU函数:

ELU函数的数学公式为 f ( x ) = { x , x > 0 α ( e x − 1 ) , x ≤ 0 f(x)=\begin{cases}x, & x>0\\\alpha(e^x-1), & x\leq0\end{cases} f(x)={x,α(ex1),x>0x0,它是另一种解决ReLU“死亡”现象的函数,通过引入一个指数函数来平滑负数区间。

以下是使用PyTorch实现ELU函数的代码示例:

import torch.nn.functional as Fx = torch.randn(2, 3)
y = F.elu(x, alpha=1.0)
print(y)

深度学习中常用的激活函数有sigmoid、ReLU、LeakyReLU、ELU、SeLU等,其中gelu是近年来提出的一种新的激活函数。

7. GELU函数:

GELU (Gaussian Error Linear Units)函数是一种近年来提出的新型激活函数,其原理是基于高斯误差函数的近似。其作用是在保持ReLU函数优点的同时,减少其缺点。将输入的值 x x x通过高斯分布的累积分布函数(CDF) F ( x ) F(x) F(x),来获得激活函数的输出值。其数学表达式如下:

g e l u ( x ) = x ⋅ Φ ( x ) , 其中 Φ ( x ) = 1 2 [ 1 + e r f ( x 2 ) ] \mathrm{gelu}(x)=x\cdot\Phi (x), \ \mathrm{其中}\Phi(x)=\frac{1}{2}[1+\mathrm{erf}(\frac{x}{\sqrt{2}})] gelu(x)=xΦ(x), 其中Φ(x)=21[1+erf(2 x)]
其中, Φ ( x ) \Phi(x) Φ(x)为高斯分布的累积分布函数。

GELU函数具有以下特点:

  • 可微性:GELU函数可导,可以使用反向传播算法训练神经网络。
  • 非线性:与ReLU函数相似,GELU函数具有非线性特点,可以学习非线性函数。
  • 平滑性:GELU函数在整个实数轴上都是连续可导的,可以减少梯度消失和爆炸问题。
  • 计算效率高:由于GELU函数采用了近似求解,计算速度较ReLU函数更快。

由于高斯分布的概率密度函数(PDF)在均值处最大,因此gelu在接近0的地方具有很好的非线性特性,同时也有一定的平滑性,能够一定程度上减少梯度消失问题,提高模型的泛化能力。

PyTorch代码示例:

import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 20)self.act = nn.GELU()def forward(self, x):x = self.fc(x)x = self.act(x)return xmodel = MyModel()
import torch
import torch.nn.functional as Fclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = torch.nn.Linear(10, 20)self.fc2 = torch.nn.Linear(20, 2)def forward(self, x):x = F.gelu(self.fc1(x))x = F.gelu(self.fc2(x))return x

在上述示例代码中,我们使用了PyTorch中的F.gelu函数,实现了GELU激活函数对网络中的每个神经元进行激活。

这篇关于深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240873

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”