深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。

2023-10-19 16:04

本文主要是介绍深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习中常用的激活函数

  • 1. Sigmoid函数
  • 2. Tanh函数
  • 3. ReLU函数
  • 4. LeakyReLU函数
  • 5. PReLU函数
  • 6. ELU函数:
  • 7. GELU函数:

深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU等。

1. Sigmoid函数

Sigmoid函数公式为 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1,它的输出值在[0,1]之间,可以用来解决二元分类问题。它的主要特点是它是可导的,并且输出值可以被解释为概率。但是,如果输入值过大或过小,会导致梯度消失问题,对于较深的神经网络来说不太适用。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))return x

2. Tanh函数

Tanh函数公式为 f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex,它的输出值在[-1,1]之间,可以用来解决回归问题。与sigmoid不同的是,它的输出是以0为中心的,因此幂次大的输入值仍然会导致梯度消失问题。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.tanh(self.fc1(x))x = F.tanh(self.fc2(x))return x

3. ReLU函数

ReLU函数公式为 f ( x ) = m a x ( 0 , x ) f(x)=max(0, x) f(x)=max(0,x),它的输出值在[0,无穷)之间,可以用来解决分类和回归问题。它有以下优点:1)解决了梯度消失问题;2)计算速度快。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))return x

4. LeakyReLU函数

LeakyReLU函数公式为 f ( x ) = m a x ( 0.01 x , x ) f(x)=max(0.01x, x) f(x)=max(0.01x,x),它的输出值在(-无穷,无穷)之间,是ReLU的改进版。在输入值为负数时,它不是完全为0,而是有一个小的斜率,可以避免神经元死亡。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.LeakyReLU = nn.LeakyReLU(0.01)def forward(self, x):x = self.LeakyReLU(self.fc1(x))x = self.LeakyReLU(self.fc2(x))return x

5. PReLU函数

PReLU函数公式为:

f ( x ) = { x , if  x > 0 α x , otherwise f(x) = \begin{cases} x, & \text{if $x > 0$}\\ \alpha x, & \text{otherwise} \end{cases} f(x)={x,αx,if x>0otherwise

其中 α \alpha α 是可学习的参数,它的输出值在(-无穷,无穷)之间,是LeakyReLU的改进版。与LeakyReLU不同的是, α \alpha α 不是固定的,而是可以根据训练数据自适应调节。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.PReLU = nn.PReLU()def forward(self, x):x = self.PReLU(self.fc1(x))x = self.PReLU(self.fc2(x))return x

6. ELU函数:

ELU函数的数学公式为 f ( x ) = { x , x > 0 α ( e x − 1 ) , x ≤ 0 f(x)=\begin{cases}x, & x>0\\\alpha(e^x-1), & x\leq0\end{cases} f(x)={x,α(ex1),x>0x0,它是另一种解决ReLU“死亡”现象的函数,通过引入一个指数函数来平滑负数区间。

以下是使用PyTorch实现ELU函数的代码示例:

import torch.nn.functional as Fx = torch.randn(2, 3)
y = F.elu(x, alpha=1.0)
print(y)

深度学习中常用的激活函数有sigmoid、ReLU、LeakyReLU、ELU、SeLU等,其中gelu是近年来提出的一种新的激活函数。

7. GELU函数:

GELU (Gaussian Error Linear Units)函数是一种近年来提出的新型激活函数,其原理是基于高斯误差函数的近似。其作用是在保持ReLU函数优点的同时,减少其缺点。将输入的值 x x x通过高斯分布的累积分布函数(CDF) F ( x ) F(x) F(x),来获得激活函数的输出值。其数学表达式如下:

g e l u ( x ) = x ⋅ Φ ( x ) , 其中 Φ ( x ) = 1 2 [ 1 + e r f ( x 2 ) ] \mathrm{gelu}(x)=x\cdot\Phi (x), \ \mathrm{其中}\Phi(x)=\frac{1}{2}[1+\mathrm{erf}(\frac{x}{\sqrt{2}})] gelu(x)=xΦ(x), 其中Φ(x)=21[1+erf(2 x)]
其中, Φ ( x ) \Phi(x) Φ(x)为高斯分布的累积分布函数。

GELU函数具有以下特点:

  • 可微性:GELU函数可导,可以使用反向传播算法训练神经网络。
  • 非线性:与ReLU函数相似,GELU函数具有非线性特点,可以学习非线性函数。
  • 平滑性:GELU函数在整个实数轴上都是连续可导的,可以减少梯度消失和爆炸问题。
  • 计算效率高:由于GELU函数采用了近似求解,计算速度较ReLU函数更快。

由于高斯分布的概率密度函数(PDF)在均值处最大,因此gelu在接近0的地方具有很好的非线性特性,同时也有一定的平滑性,能够一定程度上减少梯度消失问题,提高模型的泛化能力。

PyTorch代码示例:

import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 20)self.act = nn.GELU()def forward(self, x):x = self.fc(x)x = self.act(x)return xmodel = MyModel()
import torch
import torch.nn.functional as Fclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = torch.nn.Linear(10, 20)self.fc2 = torch.nn.Linear(20, 2)def forward(self, x):x = F.gelu(self.fc1(x))x = F.gelu(self.fc2(x))return x

在上述示例代码中,我们使用了PyTorch中的F.gelu函数,实现了GELU激活函数对网络中的每个神经元进行激活。

这篇关于深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240873

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.