深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。

2023-10-19 16:04

本文主要是介绍深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习中常用的激活函数

  • 1. Sigmoid函数
  • 2. Tanh函数
  • 3. ReLU函数
  • 4. LeakyReLU函数
  • 5. PReLU函数
  • 6. ELU函数:
  • 7. GELU函数:

深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU等。

1. Sigmoid函数

Sigmoid函数公式为 f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1,它的输出值在[0,1]之间,可以用来解决二元分类问题。它的主要特点是它是可导的,并且输出值可以被解释为概率。但是,如果输入值过大或过小,会导致梯度消失问题,对于较深的神经网络来说不太适用。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.sigmoid(self.fc1(x))x = F.sigmoid(self.fc2(x))return x

2. Tanh函数

Tanh函数公式为 f ( x ) = e x − e − x e x + e − x f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex,它的输出值在[-1,1]之间,可以用来解决回归问题。与sigmoid不同的是,它的输出是以0为中心的,因此幂次大的输入值仍然会导致梯度消失问题。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.tanh(self.fc1(x))x = F.tanh(self.fc2(x))return x

3. ReLU函数

ReLU函数公式为 f ( x ) = m a x ( 0 , x ) f(x)=max(0, x) f(x)=max(0,x),它的输出值在[0,无穷)之间,可以用来解决分类和回归问题。它有以下优点:1)解决了梯度消失问题;2)计算速度快。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)def forward(self, x):x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))return x

4. LeakyReLU函数

LeakyReLU函数公式为 f ( x ) = m a x ( 0.01 x , x ) f(x)=max(0.01x, x) f(x)=max(0.01x,x),它的输出值在(-无穷,无穷)之间,是ReLU的改进版。在输入值为负数时,它不是完全为0,而是有一个小的斜率,可以避免神经元死亡。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.LeakyReLU = nn.LeakyReLU(0.01)def forward(self, x):x = self.LeakyReLU(self.fc1(x))x = self.LeakyReLU(self.fc2(x))return x

5. PReLU函数

PReLU函数公式为:

f ( x ) = { x , if  x > 0 α x , otherwise f(x) = \begin{cases} x, & \text{if $x > 0$}\\ \alpha x, & \text{otherwise} \end{cases} f(x)={x,αx,if x>0otherwise

其中 α \alpha α 是可学习的参数,它的输出值在(-无穷,无穷)之间,是LeakyReLU的改进版。与LeakyReLU不同的是, α \alpha α 不是固定的,而是可以根据训练数据自适应调节。

PyTorch的代码示例:

import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 1)self.PReLU = nn.PReLU()def forward(self, x):x = self.PReLU(self.fc1(x))x = self.PReLU(self.fc2(x))return x

6. ELU函数:

ELU函数的数学公式为 f ( x ) = { x , x > 0 α ( e x − 1 ) , x ≤ 0 f(x)=\begin{cases}x, & x>0\\\alpha(e^x-1), & x\leq0\end{cases} f(x)={x,α(ex1),x>0x0,它是另一种解决ReLU“死亡”现象的函数,通过引入一个指数函数来平滑负数区间。

以下是使用PyTorch实现ELU函数的代码示例:

import torch.nn.functional as Fx = torch.randn(2, 3)
y = F.elu(x, alpha=1.0)
print(y)

深度学习中常用的激活函数有sigmoid、ReLU、LeakyReLU、ELU、SeLU等,其中gelu是近年来提出的一种新的激活函数。

7. GELU函数:

GELU (Gaussian Error Linear Units)函数是一种近年来提出的新型激活函数,其原理是基于高斯误差函数的近似。其作用是在保持ReLU函数优点的同时,减少其缺点。将输入的值 x x x通过高斯分布的累积分布函数(CDF) F ( x ) F(x) F(x),来获得激活函数的输出值。其数学表达式如下:

g e l u ( x ) = x ⋅ Φ ( x ) , 其中 Φ ( x ) = 1 2 [ 1 + e r f ( x 2 ) ] \mathrm{gelu}(x)=x\cdot\Phi (x), \ \mathrm{其中}\Phi(x)=\frac{1}{2}[1+\mathrm{erf}(\frac{x}{\sqrt{2}})] gelu(x)=xΦ(x), 其中Φ(x)=21[1+erf(2 x)]
其中, Φ ( x ) \Phi(x) Φ(x)为高斯分布的累积分布函数。

GELU函数具有以下特点:

  • 可微性:GELU函数可导,可以使用反向传播算法训练神经网络。
  • 非线性:与ReLU函数相似,GELU函数具有非线性特点,可以学习非线性函数。
  • 平滑性:GELU函数在整个实数轴上都是连续可导的,可以减少梯度消失和爆炸问题。
  • 计算效率高:由于GELU函数采用了近似求解,计算速度较ReLU函数更快。

由于高斯分布的概率密度函数(PDF)在均值处最大,因此gelu在接近0的地方具有很好的非线性特性,同时也有一定的平滑性,能够一定程度上减少梯度消失问题,提高模型的泛化能力。

PyTorch代码示例:

import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc = nn.Linear(10, 20)self.act = nn.GELU()def forward(self, x):x = self.fc(x)x = self.act(x)return xmodel = MyModel()
import torch
import torch.nn.functional as Fclass Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = torch.nn.Linear(10, 20)self.fc2 = torch.nn.Linear(20, 2)def forward(self, x):x = F.gelu(self.fc1(x))x = F.gelu(self.fc2(x))return x

在上述示例代码中,我们使用了PyTorch中的F.gelu函数,实现了GELU激活函数对网络中的每个神经元进行激活。

这篇关于深度学习中常用的激活函数有sigmoid、tanh、ReLU、LeakyReLU、PReLU、GELU等。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240873

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.