SPSS|偏度和峰度|正态性分布检验|实战小练-SPSS学习(1)

2023-10-19 12:28

本文主要是介绍SPSS|偏度和峰度|正态性分布检验|实战小练-SPSS学习(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 学习目的
  • 软件版本
  • 基础数据
  • 实战
    • 数据准备
    • 数据初探
    • 输出结果分析
      • 两个重要统计量:偏度和峰度
      • 正态性检验结果
      • 其他图件输出

学习目的

检验数据集是否服从正态分布。

软件版本

IBM SPSS Statistics 26。

基础数据

一组数据,如:73 76 78 77 82 82 96 76 65 79 63。

实战

数据准备

输入SPSS中,可选择导入或者直接输入,本例中数据量较少,直接输入。
打开软件主界面,点击底部标签, 切换至“变量视图”,输入变量名称,如VAR:
在这里插入图片描述
切换到数据视图,输入数据:73 76 78 77 82 82 96 76 65 79 63。
在这里插入图片描述

数据初探

完成数据输入后,在主界面依次点击:分析-描述统计-探索
在这里插入图片描述
就会看到下述图片,将变量名加入因变量列表,点击图(T)…,我们可以选择输出图片(茎叶图、直方图),勾选含检验的正态图(O)。点击继续,如果想要输出图片,在输出应该选择两者都。选择确定
在这里插入图片描述
初始分析结果:
在这里插入图片描述

输出结果分析

探索描述,是对数据的统计总体描述。

两个重要统计量:偏度和峰度

描述标最下方的是:偏度和峰度。
偏度:
偏度(skewness)也称为偏态、偏态系数,是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。
详见:百度百科偏度-统计数据分布偏斜方向程度的度量。
峰度:
峰度(peakedness;kurtosis)又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。样本的峰度是和正态分布相比较而言统计量,如果峰度大于三,峰的形状比较尖,比正态分布峰要陡峭。反之亦然。
在统计学中,峰度(Kurtosis)衡量实数随机变量概率分布的峰态。峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的。
详见:百度百科峰度-衡量实数随机变量概率分布的峰态。
统计意义上:
引自:检验数据是否服从正态分布。
在这里插入图片描述
偏度SK越趋近0,数据越服从正态分布,众数=中位数=平均数;SK>0,为正偏态或左偏,众数<中位数<平均数;SK<0,为负偏态或右偏,众数>中位数>平均数。
峰度KG越趋近3,数据越服从正态分布;KG>3,峰度尖锐;KG<3,峰度扁平。(或exceess_KG=KG-3,exceess_KG越趋近0,数据越服从正态分布)。
但是仅根据偏度和峰度还不足以判断数据是否服从正态分布,需要做进一步的检验。

正态性检验结果

SPSS中检验数据是否呈“正态分布”主要通过Kolmogorov-Smirnova(K-S检验)和Shapiro-Wilk(S-W检验)。
当数据量50时,倾向以S-W检验结果为准;当数据量>50时,倾向以K-S检验结果为准;当数据量>5000时,SPSS则只会显示K-S检验结果。
在这里插入图片描述
上表是生成的KS检验(D检验)和SW检验(W检验)的检验结果,此处我们关注的显著性是Sig.即P值。当P>0.05时,可以认为数据是呈正态分布的。
由上表可以看出,KS检验和SW检验显著性均>0.05。

其他图件输出

在输出结果部分还可以生成直方图、茎叶图、正态 Q-Q 图等,可以根据图形做出观测。
直方图
在这里插入图片描述
茎叶图
在这里插入图片描述
正态 Q-Q 图
在这里插入图片描述

这篇关于SPSS|偏度和峰度|正态性分布检验|实战小练-SPSS学习(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/239749

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶