Postgresql源码(35)vacuum freeze起始位点逻辑分析

2023-10-19 12:10

本文主要是介绍Postgresql源码(35)vacuum freeze起始位点逻辑分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

查询指令

https://blog.csdn.net/jackgo73/article/details/122700702


SELECT n.nspname as "Schema", c.relname as "Name", c.relfrozenxid,age(c.relfrozenxid) 
FROM pg_catalog.pg_class c
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
WHERE c.relkind IN ('r','')
AND n.nspname <> 'information_schema' AND n.nspname !~ '^pg_toast'
AND pg_catalog.pg_table_is_visible(c.oid)
ORDER BY c.relfrozenxid::text::bigint DESC;select datname,age(datfrozenxid),2^31-age(datfrozenxid) age_remain from pg_database order by age(datfrozenxid) desc;
select current_database(),rolname,nspname,relkind,relname,age(relfrozenxid),2^31-age(relfrozenxid) age_remain from pg_authid t1 join pg_class t2 on t1.oid=t2.relowner join pg_namespace t3 on t2.relnamespace=t3.oid where t2.relkind in ($$t$$,$$r$$) order by age(relfrozenxid) desc limit 5;select datname,usename,query,xact_start,now()-xact_start xact_duration,query_start,now()-query_start query_duration,state from pg_stat_activity where state<>$$idle$$ and (backend_xid is not null or backend_xmin is not null) and now()-xact_start > interval $$30 min$$ order by xact_start;
select name,statement,prepare_time,now()-prepare_time,parameter_types,from_sql from pg_prepared_statements where now()-prepare_time > interval $$30 min$$ order by prepare_time;

关键参数

系统级


# (final模式默认两亿,把回收xid位点limit设为oldestXmin,然后把limit之前的全部freeze,同时开始告警)
autovacuum_freeze_max_age = 200000000      # 如果表的事务ID年龄大于该值, 即使未开启autovacuum也会强制触发FREEZE, 并告警Preventing Transaction ID Wraparound Failures# (lazy模式默认五千万,把回收xid位点limit设为oldestXmin减五千万,回收垃圾元组的同时顺便freeze)
vacuum_freeze_min_age = 50000000           # 手动或自动垃圾回收时, 如果记录的事务ID年龄大于该值, 将被FREEZE    # (eager模式默认一亿五千万,把回收xid位点limit设为oldestXmin减一亿五千万,按vm按需扫页面然后freeze)
vacuum_freeze_table_age = 150000000        # 手动垃圾回收时, 如果表的事务ID年龄大于该值, 将触发FREEZE. 该参数的上限值为 %95 autovacuum_freeze_max_age    # 组合事务ID限制,同上述配置。
autovacuum_multixact_freeze_max_age = 400000000      # 如果表的并行事务ID年龄大于该值, 即使未开启autovacuum也会强制触发FREEZE, 并告警Preventing Transaction ID Wraparound Failures 
vacuum_multixact_freeze_min_age = 5000000            # 手动或自动垃圾回收时, 如果记录的并行事务ID年龄大于该值, 将被FREEZE    
vacuum_multixact_freeze_table_age = 150000000        # 手动垃圾回收时, 如果表的并行事务ID年龄大于该值, 将触发FREEZE. 该参数的上限值为 %95 autovacuum_multixact_freeze_max_age    # 其他配置
autovacuum_vacuum_cost_delay       # 自动垃圾回收时, 每轮回收周期后的一个休息时间, 主要防止垃圾回收太耗资源. -1 表示沿用vacuum_cost_delay的设置    
autovacuum_vacuum_cost_limit       # 自动垃圾回收时, 每轮回收周期设多大限制, 限制由vacuum_cost_page_hit,vacuum_cost_page_missvacuum_cost_page_dirty参数以及周期内的操作决定. -1 表示沿用vacuum_cost_limit的设置    
vacuum_cost_delay                  # 手动垃圾回收时, 每轮回收周期后的一个休息时间, 主要防止垃圾回收太耗资源.    
vacuum_cost_limit                  # 手动垃圾回收时, 每轮回收周期设多大限制, 限制由vacuum_cost_page_hit,vacuum_cost_page_missvacuum_cost_page_dirty参数以及周期内的操作决定.    

表级

# 系统级:autovacuum_freeze_max_age = 500000000
# 表级分段配置:
alter table t set (autovacuum_freeze_max_age=210000000);
alter table t set (autovacuum_freeze_max_age=220000000);
alter table t set (autovacuum_freeze_max_age=230000000);
..

计算cutoff位点

起始freeze的位点


void
vacuum_set_xid_limits(Relation rel,int freeze_min_age,int freeze_table_age,int multixact_freeze_min_age,int multixact_freeze_table_age,TransactionId *oldestXmin,TransactionId *freezeLimit,TransactionId *xidFullScanLimit,MultiXactId *multiXactCutoff,MultiXactId *mxactFullScanLimit)
{int			freezemin;int			mxid_freezemin;int			effective_multixact_freeze_max_age;TransactionId limit;TransactionId safeLimit;MultiXactId oldestMxact;MultiXactId mxactLimit;MultiXactId safeMxactLimit;/** We can always ignore processes running lazy vacuum.  This is because we* use these values only for deciding which tuples we must keep in the* tables.  Since lazy vacuum doesn't write its XID anywhere, it's safe to* ignore it.  In theory it could be problematic to ignore lazy vacuums in* a full vacuum, but keep in mind that only one vacuum process can be* working on a particular table at any time, and that each vacuum is* always an independent transaction.*/*oldestXmin =TransactionIdLimitedForOldSnapshots(GetOldestXmin(rel, PROCARRAY_FLAGS_VACUUM), rel);Assert(TransactionIdIsNormal(*oldestXmin));/** Determine the minimum freeze age to use: as specified by the caller, or* vacuum_freeze_min_age, but in any case not more than half* autovacuum_freeze_max_age, so that autovacuums to prevent XID* wraparound won't occur too frequently.*/// vacuum_freeze_min_age这个值太大了会被置为autovacuum_freeze_max_age的1/2。// 配的太大了会频繁的做freezefreezemin = freeze_min_age;if (freezemin < 0)freezemin = vacuum_freeze_min_age;freezemin = Min(freezemin, autovacuum_freeze_max_age / 2);Assert(freezemin >= 0);/** Compute the cutoff XID, being careful not to generate a "permanent" XID*/limit = *oldestXmin - freezemin;if (!TransactionIdIsNormal(limit))limit = FirstNormalTransactionId;/** If oldestXmin is very far back (in practice, more than* autovacuum_freeze_max_age / 2 XIDs old), complain and force a minimum* freeze age of zero.*/safeLimit = ReadNewTransactionId() - autovacuum_freeze_max_age;if (!TransactionIdIsNormal(safeLimit))safeLimit = FirstNormalTransactionId;

下面判断逻辑会根据情况调整freeze起始位点
在这里插入图片描述

	if (TransactionIdPrecedes(limit, safeLimit)){ereport(WARNING,(errmsg("oldest xmin is far in the past"),errhint("Close open transactions soon to avoid wraparound problems.")));limit = *oldestXmin;}*freezeLimit = limit;/** Compute the multixact age for which freezing is urgent.  This is* normally autovacuum_multixact_freeze_max_age, but may be less if we are* short of multixact member space.*/effective_multixact_freeze_max_age = MultiXactMemberFreezeThreshold();/** Determine the minimum multixact freeze age to use: as specified by* caller, or vacuum_multixact_freeze_min_age, but in any case not more* than half effective_multixact_freeze_max_age, so that autovacuums to* prevent MultiXact wraparound won't occur too frequently.*/mxid_freezemin = multixact_freeze_min_age;if (mxid_freezemin < 0)mxid_freezemin = vacuum_multixact_freeze_min_age;mxid_freezemin = Min(mxid_freezemin,effective_multixact_freeze_max_age / 2);Assert(mxid_freezemin >= 0);/* compute the cutoff multi, being careful to generate a valid value */oldestMxact = GetOldestMultiXactId();mxactLimit = oldestMxact - mxid_freezemin;if (mxactLimit < FirstMultiXactId)mxactLimit = FirstMultiXactId;safeMxactLimit =ReadNextMultiXactId() - effective_multixact_freeze_max_age;if (safeMxactLimit < FirstMultiXactId)safeMxactLimit = FirstMultiXactId;if (MultiXactIdPrecedes(mxactLimit, safeMxactLimit)){ereport(WARNING,(errmsg("oldest multixact is far in the past"),errhint("Close open transactions with multixacts soon to avoid wraparound problems.")));/* Use the safe limit, unless an older mxact is still running */if (MultiXactIdPrecedes(oldestMxact, safeMxactLimit))mxactLimit = oldestMxact;elsemxactLimit = safeMxactLimit;}*multiXactCutoff = mxactLimit;if (xidFullScanLimit != NULL){int			freezetable;Assert(mxactFullScanLimit != NULL);/** Determine the table freeze age to use: as specified by the caller,* or vacuum_freeze_table_age, but in any case not more than* autovacuum_freeze_max_age * 0.95, so that if you have e.g nightly* VACUUM schedule, the nightly VACUUM gets a chance to freeze tuples* before anti-wraparound autovacuum is launched.*/freezetable = freeze_table_age;if (freezetable < 0)freezetable = vacuum_freeze_table_age;freezetable = Min(freezetable, autovacuum_freeze_max_age * 0.95);Assert(freezetable >= 0);/** Compute XID limit causing a full-table vacuum, being careful not to* generate a "permanent" XID.*/limit = ReadNewTransactionId() - freezetable;if (!TransactionIdIsNormal(limit))limit = FirstNormalTransactionId;*xidFullScanLimit = limit;/** Similar to the above, determine the table freeze age to use for* multixacts: as specified by the caller, or* vacuum_multixact_freeze_table_age, but in any case not more than* autovacuum_multixact_freeze_table_age * 0.95, so that if you have* e.g. nightly VACUUM schedule, the nightly VACUUM gets a chance to* freeze multixacts before anti-wraparound autovacuum is launched.*/freezetable = multixact_freeze_table_age;if (freezetable < 0)freezetable = vacuum_multixact_freeze_table_age;freezetable = Min(freezetable,effective_multixact_freeze_max_age * 0.95);Assert(freezetable >= 0);/** Compute MultiXact limit causing a full-table vacuum, being careful* to generate a valid MultiXact value.*/mxactLimit = ReadNextMultiXactId() - freezetable;if (mxactLimit < FirstMultiXactId)mxactLimit = FirstMultiXactId;*mxactFullScanLimit = mxactLimit;}else{Assert(mxactFullScanLimit == NULL);}
}

验证

实测


select txid_current(); # 14076185# 创建表时relfrozenxid就是当前的事务ID,age=0(currentxid - 创建表时relfrozenxid就是当前的事务ID,age)
create table t9(i int);select age(relfrozenxid),relfrozenxid,relname,pg_size_pretty(pg_total_relation_size(oid)) from pg_class where relname='t9';  age | relfrozenxid | relname | pg_size_pretty 
-----+--------------+---------+----------------1 |     14076186 | t9      | 0 bytesinsert into t9 values (1);
insert into t9 values (2);postgres=# select t_xmin,t_xmax,t_infomask2,t_infomask from heap_page_items(get_raw_page('t9', 0));t_xmin  | t_xmax | t_infomask2 | t_infomask 
----------+--------+-------------+------------14076187 |      0 |           1 |       204814076188 |      0 |           1 |       2048postgres=# select * from pg_stat_user_tables  where relname='t9';
-[ RECORD 1 ]-------+-------
relid               | 135092
schemaname          | public
relname             | t9
seq_scan            | 0
seq_tup_read        | 0
idx_scan            | 
idx_tup_fetch       | 
n_tup_ins           | 2
n_tup_upd           | 0
n_tup_del           | 0
n_tup_hot_upd       | 0
n_live_tup          | 2
n_dead_tup          | 0
n_mod_since_analyze | 2
last_vacuum         |    (执行了,不管清理没清理,都会更新时间)
last_autovacuum     | 
last_analyze        | 
last_autoanalyze    | 
vacuum_count        | 0
autovacuum_count    | 0
analyze_count       | 
autoanalyze_count   | 0【1】启动长事务
【2】启动消耗事务ID:pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 10  # (1)到vacuum_freeze_min_age=5000W时,因为长事务存在,不能freeze。
# (2)不会有报错
# (3)但会提示最老事务的事务ID:oldest xmin: 14076189(就是那个长事务)
vacuum (freeze,verbose) t9;
INFO:  vacuuming "public.t9"
INFO:  "t9": found 0 removable, 2 nonremovable row versions in 1 out of 1 pages
DETAIL:  0 dead row versions cannot be removed yet, oldest xmin: 14076189
There were 0 unused item pointers.
Skipped 0 pages due to buffer pins, 0 frozen pages.
0 pages are entirely empty.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
VACUUMpostgres=# select age(relfrozenxid),relfrozenxid,relname,pg_size_pretty(pg_total_relation_size(oid)) from pg_class where relname='t9';  age    | relfrozenxid | relname | pg_size_pretty 
----------+--------------+---------+----------------59056502 |     14076189 | t9      | 40 kB# (1)到vacuum_freeze_table_age=15000W时,因为长事务存在,不能freeze。
# (2)不会有报错
# (3)但会提示最老事务的事务ID:oldest xmin: 14076189(就是那个长事务)
postgres=# vacuum (freeze,verbose) t9;
vacuum (freeze,verbose) t9;
INFO:  vacuuming "public.t9"
INFO:  "t9": found 0 removable, 2 nonremovable row versions in 1 out of 1 pages
DETAIL:  0 dead row versions cannot be removed yet, oldest xmin: 14076189
There were 0 unused item pointers.
Skipped 0 pages due to buffer pins, 0 frozen pages.
0 pages are entirely empty.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
VACUUMpostgres=# select age(relfrozenxid),relfrozenxid,relname,pg_size_pretty(pg_total_relation_size(oid)) from pg_class where relname='t9';  age    | relfrozenxid | relname | pg_size_pretty 
-----------+--------------+---------+----------------153257008 |     14076189 | t9      | 40 kB# (1)到autovacuum_freeze_max_age=20000W时,因为长事务存在,不能freeze。
# (2)开始报警,但是没报错
# (3)但会提示最老事务的事务ID:oldest xmin: 14076189(就是那个长事务)
postgres=# vacuum (freeze,verbose) t9;
WARNING:  oldest xmin is far in the past
HINT:  Close open transactions soon to avoid wraparound problems.
INFO:  vacuuming "public.t9"
INFO:  "t9": found 0 removable, 2 nonremovable row versions in 1 out of 1 pages
DETAIL:  0 dead row versions cannot be removed yet, oldest xmin: 14076189
There were 0 unused item pointers.
Skipped 0 pages due to buffer pins, 0 frozen pages.
0 pages are entirely empty.
CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s.
VACUUM
postgres=# select age(relfrozenxid),relfrozenxid,relname,pg_size_pretty(pg_total_relation_size(oid)) from pg_class where relname='t9';  age    | relfrozenxid | relname | pg_size_pretty 
-----------+--------------+---------+----------------213075933 |     14076189 | t9      | 40 kB

这篇关于Postgresql源码(35)vacuum freeze起始位点逻辑分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/239655

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与