10个自动EDA库功能介绍:几行代码进行的数据分析靠不靠谱

2023-10-19 10:10

本文主要是介绍10个自动EDA库功能介绍:几行代码进行的数据分析靠不靠谱,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

探索性数据分析是数据科学模型开发和数据集研究的重要组成部分之一。在拿到一个新数据集时首先就需要花费大量时间进行EDA来研究数据集中内在的信息。自动化的EDA软件包可以用几行Python代码执行EDA。在本文中整理了10个可以自动执行EDA并生成有关数据的见解的软件包,看看他们都有什么功能,能在多大程度上帮我们自动化解决EDA的需求。

在这里插入图片描述

1) DTale
2) Pandas-profiling
3) sweetviz
4) autoviz
5) dataprep
6) KLib
7) dabl
8) speedML
9) datatile
10) edaviz

1、D-Tale

D-Tale使用Flask作为后端、React前端并且可以与ipython notebook和终端无缝集成。D-Tale可以支持Pandas的DataFrame, Series, MultiIndex, DatetimeIndex和RangeIndex。

import dtale
import pandas as pddtale.show(pd.read_csv("titanic.csv"))

D-Tale库用一行代码就可以生成一个报告,其中包含数据集、相关性、图表和热图的总体总结,并突出显示缺失的值等。D-Tale还可以为报告中的每个图表进行分析,上面截图中我们可以看到图表是可以进行交互操作的。

2、Pandas-Profiling

Pandas-Profiling可以生成Pandas DataFrame的概要报告。panda-profiling扩展了pandas DataFrame df.profile_report(),并且在大型数据集上工作得非常好,它可以在几秒钟内创建报告。

#Install the below libaries before importing
import pandas as pd
from pandas_profiling import ProfileReport#EDA using pandas-profiling
profile = ProfileReport(pd.read_csv('titanic.csv'), explorative=True)#Saving results to a HTML file
profile.to_file("output.html")

3、Sweetviz

Sweetviz是一个开源的Python库,只需要两行Python代码就可以生成漂亮的可视化图,将EDA(探索性数据分析)作为一个HTML应用程序启动。Sweetviz包是围绕快速可视化目标值和比较数据集构建的。

import pandas as pd
import sweetviz as sv#EDA using Autoviz
sweet_report = sv.analyze(pd.read_csv("titanic.csv"))#Saving results to HTML file
sweet_report.show_html('sweet_report.html')

Sweetviz库生成的报告包含数据集、相关性、分类和数字特征关联等的总体总结。

在这里插入图片描述

4、AutoViz

Autoviz包可以用一行代码自动可视化任何大小的数据集,并自动生成HTML、bokeh等报告。用户可以与AutoViz包生成的HTML报告进行交互。

import pandas as pd
from autoviz.AutoViz_Class import AutoViz_Class#EDA using Autoviz
autoviz = AutoViz_Class().AutoViz('train.csv')

5、Dataprep

Dataprep是一个用于分析、准备和处理数据的开源Python包。DataPrep构建在Pandas和Dask DataFrame之上,可以很容易地与其他Python库集成。

DataPrep的运行速度这10个包中最快的,他在几秒钟内就可以为Pandas/Dask DataFrame生成报告。

from dataprep.datasets import load_dataset
from dataprep.eda import create_reportdf = load_dataset("titanic.csv")
create_report(df).show_browser()

在这里插入图片描述

6、Klib

klib是一个用于导入、清理、分析和预处理数据的Python库。

import klib
import pandas as pddf = pd.read_csv('DATASET.csv')
klib.missingval_plot(df)

在这里插入图片描述

klib.corr_plot(df_cleaned, annot=False)

在这里插入图片描述

klib.dist_plot(df_cleaned['Win_Prob'])

在这里插入图片描述

klib.cat_plot(df, figsize=(50,15))

klibe虽然提供了很多的分析函数,但是对于每一个分析需要我们手动的编写代码,所以只能说是半自动化的操作,但是如果我们需要更定制化的分析,他是非常方便的。

7、Dabl

Dabl不太关注单个列的统计度量,而是更多地关注通过可视化提供快速概述,以及方便的机器学习预处理和模型搜索。

dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括:

  • 目标分布图
  • 散射对图
  • 线性判别分析
import pandas as pd
import dabldf = pd.read_csv("titanic.csv")
dabl.plot(df, target_col="Survived")

8、Speedml

SpeedML是用于快速启动机器学习管道的Python包。SpeedML整合了一些常用的ML包,包括Pandas,Numpy,Sklearn,Xgboost和Matplotlib,所以说其实SpeedML不仅仅包含自动化EDA的功能。

SpeedML官方说,使用它可以基于迭代进行开发,将编码时间缩短了70%。

from speedml import Speedmlsml = Speedml('../input/train.csv', '../input/test.csv', target = 'Survived', uid = 'PassengerId')sml.plot.correlate()

在这里插入图片描述

sml.plot.distribute()

在这里插入图片描述

sml.plot.ordinal('Parch')

在这里插入图片描述

sml.plot.continuous('Age')

9、DataTile

DataTile(以前称为Pandas-Summary)是一个开源的Python软件包,负责管理,汇总和可视化数据。DataTile基本上是PANDAS DataFrame describe()函数的扩展。

import pandas as pd
from datatile.summary.df import DataFrameSummarydf = pd.read_csv('titanic.csv')
dfs = DataFrameSummary(df)
dfs.summary()

在这里插入图片描述

10、edaviz

edaviz是一个可以在Jupyter Notebook和Jupyter Lab中进行数据探索和可视化的python库,他本来是非常好用的,但是后来被砖厂(Databricks)收购并且整合到bamboolib 中,所以这里就简单的给个演示。

在这里插入图片描述

总结

在本文中,我们介绍了10个自动探索性数据分析Python软件包,这些软件包可以在几行Python代码中生成数据摘要并进行可视化。通过自动化的工作可以节省我们的很多时间。

Dataprep是我最常用的EDA包,AutoViz和D-table也是不错的选择,如果你需要定制化分析可以使用Klib,SpeedML整合的东西比较多,单独使用它啊进行EDA分析不是特别的适用,其他的包可以根据个人喜好选择,其实都还是很好用的,最后edaviz就不要考虑了,因为已经不开源了。

https://avoid.overfit.cn/post/d4fef866d3ab428b8e2939859bbef2fa

作者:Satyam Kumar

这篇关于10个自动EDA库功能介绍:几行代码进行的数据分析靠不靠谱的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/239121

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Java实现预览与打印功能详解

《Java实现预览与打印功能详解》在Java中,打印功能主要依赖java.awt.print包,该包提供了与打印相关的一些关键类,比如PrinterJob和PageFormat,它们构成... 目录Java 打印系统概述打印预览与设置使用 PageFormat 和 PrinterJob 类设置页面格式与纸张

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

MySQL 8 中的一个强大功能 JSON_TABLE示例详解

《MySQL8中的一个强大功能JSON_TABLE示例详解》JSON_TABLE是MySQL8中引入的一个强大功能,它允许用户将JSON数据转换为关系表格式,从而可以更方便地在SQL查询中处理J... 目录基本语法示例示例查询解释应用场景不适用场景1. ‌jsON 数据结构过于复杂或动态变化‌2. ‌性能要