Elasticsearch系列组件:Beats高效的日志收集和传输解决方案

本文主要是介绍Elasticsearch系列组件:Beats高效的日志收集和传输解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elasticsearch 是一个开源的、基于 Lucene 的分布式搜索和分析引擎,设计用于云计算环境中,能够实现实时的、可扩展的搜索、分析和探索全文和结构化数据。它具有高度的可扩展性,可以在短时间内搜索和分析大量数据。

Elasticsearch 不仅仅是一个全文搜索引擎,它还提供了分布式的多用户能力,实时的分析,以及对复杂搜索语句的处理能力,使其在众多场景下,如企业搜索,日志和事件数据分析等,都有广泛的应用。

本文将介绍 Elastic Stack 组件 Beats 的介绍、原理、安装与简单使用。


文章目录

        • 1、Beats介绍
          • 1.1、Beats简介
          • 1.2、Beats系列组件
          • 1.3、Beats组件安装
        • 2、使用FileBeat对接ES,监控logback日志
          • 2.1、使用FileBeat对接ES,监控logback日志
          • 2.2、测试查看效果
          • 2.3、查看效果
        • 3、Beats数据处理原理
          • 3.1、Beats数据处理原理
          • 3.2、Beats和Logstash


1、Beats介绍
1.1、Beats简介

Beats 是 Elastic Stack 的一部分,它是一系列轻量级的数据采集器。Beats 可以在你的服务器上采集各种类型的数据,并将这些数据发送到 Elasticsearch 或者 Logstash 进行后续处理。

主要功能和用途:

  1. 数据采集:Beats 可以采集各种类型的数据,包括日志文件(Filebeat)、网络数据(Packetbeat)、系统和服务的运行指标(Metricbeat)、Windows 事件日志(Winlogbeat)等。
  2. 数据转发:Beats 可以将采集到的数据发送到 Elasticsearch 进行索引,也可以发送到 Logstash 进行更复杂的处理。
  3. 轻量级:Beats 设计的目标是轻量级和低资源占用,因此它可以在所有类型的服务器上运行,甚至包括在 IoT 设备上。
  4. 易于扩展:Beats 提供了开发者指南,用户可以根据自己的需求编写自定义的 Beats。

总的来说,Beats 是 Elastic Stack 中负责数据采集的组件,它可以帮助用户轻松地从各种源头采集数据,并将数据发送到 Elasticsearch 或 Logstash 进行后续的处理和分析。

image-20231018111226546

1.2、Beats系列组件

Beats 不是一个单独的软件,而是一系列的数据采集器。每一个 Beat 都是一个独立的组件,负责采集特定类型的数据,并将这些数据发送到 Elasticsearch 或者 Logstash 进行后续处理。例如,Filebeat 专门用于收集和转发日志文件,Metricbeat 用于收集系统和服务的运行指标,Packetbeat 用于收集网络流量数据等。

  1. Filebeat:主要用于收集和转发日志文件。它可以监控指定的日志目录或文件,当日志更新时,Filebeat 就会读取更新的内容并发送到 Elasticsearch 或 Logstash。使用场景包括日志分析、故障排查等。

  2. Metricbeat:用于收集系统和服务的运行指标,如 CPU 使用率、内存使用量、网络流量、磁盘 I/O 等。它可以定期收集这些指标并发送到 Elasticsearch 或 Logstash。使用场景包括系统监控、性能分析等。

  3. Packetbeat:用于收集网络流量数据。它可以实时捕获网络流量,然后解析出各种协议的信息(如 HTTP、MySQL、Redis 等),并将这些信息发送到 Elasticsearch 或 Logstash。使用场景包括网络监控、安全分析等。

  4. Winlogbeat:专门用于收集 Windows 事件日志。它可以读取 Windows 事件日志,然后将日志数据发送到 Elasticsearch 或 Logstash。使用场景包括 Windows 系统监控、安全分析等。

  5. Auditbeat:用于收集 Linux 审计框架的数据,以及文件的改变数据。它可以帮助你了解在系统上发生了什么,包括哪些文件被改变,以及系统调用等。使用场景包括系统审计、文件完整性检查等。

  6. Heartbeat:用于定期检查你的服务是否可用。它可以定期发送请求到你的服务,然后收集响应时间等信息,并将这些信息发送到 Elasticsearch 或 Logstash。使用场景包括服务监控、可用性检查等。

1.3、Beats组件安装

我们这里以安装 Beats 系列组件之一的 Filebeat 为例

Elastic 公司的官方下载页面的链接。在这个页面上,你可以下载 Elastic Stack 的各个组件,包括 Elasticsearch、Kibana、Logstash、Beats 等。这个页面提供了各个组件的最新版本下载链接,以及历史版本的下载链接:Past Releases of Elastic Stack Software | Elastic

在这里,我们将选择 filebeat,并确保所选的 filebeat 版本与我们正在使用的 Elasticsearch 版本一致:

image-20231018112106768

选择后选择「Download」开始下载,并在下载成功后解压到指定位置即可。


2、使用FileBeat对接ES,监控logback日志
2.1、使用FileBeat对接ES,监控logback日志

使用 Filebeat 对接 Elasticsearch 监控 logback 日志,可以按照以下步骤进行:

  1. 安装 Filebeat:根据你的操作系统,从 Elastic 官网下载并安装 Filebeat;
  2. 配置 Filebeat:在 Filebeat 的配置文件(通常是 filebeat.yml)中,需要配置两个主要部分,一是输入(input),二是输出(output)。

输入:指定 Filebeat 需要收集的日志文件的位置。如果你的 logback 日志文件位于 /var/log/app/*.log,那么可以这样配置:

filebeat.inputs:
- type: logenabled: truepaths:- /var/log/app/*.log

输出:指定 Filebeat 将数据发送到哪里。如果你的 Elasticsearch 服务运行在 localhost:9200,那么可以这样配置:

output.elasticsearch:hosts: ["localhost:9200"]
  1. 启动 Filebeat:保存并关闭配置文件后,运行 Filebeat。在命令行中,可以使用以下命令启动 Filebeat:
./filebeat -e
  1. 验证数据是否已经发送到 Elasticsearch:你可以查询 Elasticsearch 来验证是否已经接收到来自 Filebeat 的数据。例如,你可以在 Kibana 中查看这些数据,或者直接查询 Elasticsearch 的 API。

以上就是使用 Filebeat 对接 Elasticsearch 监控 logback 日志的基本步骤。在实际操作中,可能还需要根据你的具体需求进行一些额外的配置,例如设置多个输入源、配置日志旋转、添加字段等。

2.2、测试查看效果

我们使用 Python 实现一个生成日志文件的简单脚本

import time
import random
import osdef generate_log():log_file = os.path.expanduser('~/test.log')# 如果文件不存在,则创建文件if not os.path.exists(log_file):with open(log_file, 'w') as file:passwhile True:current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())operation = random.choice(["操作1", "操作2", "操作3"])  # 随机选择操作信息log = f"{current_time} - {operation}\n"with open(log_file, 'a') as file:file.write(log)print(log)  # 在控制台打印日志信息time.sleep(60)  # 暂停60秒,即每分钟插入一条日志if __name__ == '__main__':generate_log()

这个脚本使用了timerandom模块。在generate_log函数中,通过time.strftime函数获取当前时间,并使用random.choice函数随机选择操作信息。然后将时间和操作信息拼接成一条日志,并使用with open语句打开/var/log/test.log文件,以追加模式写入日志。最后使用time.sleep函数暂停60秒,即每分钟插入一条日志。

2.3、查看效果

可以通过 kinada 查看效果:

image-20231018142208302


3、Beats数据处理原理
3.1、Beats数据处理原理

Beats 是 Elastic Stack(以前称为 ELK Stack)的一部分,主要负责数据收集。它包括多种类型的 Beat,如 Filebeat、Metricbeat、Packetbeat、Auditbeat 等,每种 Beat 都负责收集一种特定类型的数据。

以下是 Beats 数据收集的基本原理:

  1. 数据收集:每种 Beat 都会在运行的主机上收集特定类型的数据。例如,Filebeat 会收集日志文件,Metricbeat 会收集系统和服务的指标,Packetbeat 会收集网络流量数据,Auditbeat 会收集审计数据。

  2. 数据处理:在收集数据之后,Beat 可以对数据进行一些处理,如解析、归一化、丰富等。这是通过配置文件中的处理器(processor)来完成的。

  3. 数据输出:处理过的数据会被发送到配置的输出目标。Beat 支持多种类型的输出,如 Elasticsearch、Logstash、Kafka、Redis 等。最常见的配置是将数据发送到 Elasticsearch,以便在 Kibana 中进行搜索和可视化。

  4. 数据转发:在某些情况下,Beat 可以将数据发送到 Logstash 进行更复杂的处理,然后再由 Logstash 将数据发送到 Elasticsearch。

  5. 模块和集成:为了简化配置和使用,Beat 提供了一系列的模块和集成,可以方便地收集、解析和可视化特定服务(如 Nginx、MySQL、Docker 等)的数据。

总的来说,Beats 的工作原理就是在主机上收集数据,处理数据,然后将数据发送到输出目标。

3.2、Beats和Logstash

Beats 和 Logstash 都是 Elastic Stack 的组件,主要负责数据的收集和处理,但它们的功能和使用场景有所不同。

Beats 是一系列轻量级的数据收集器,每种 Beat 都负责收集一种特定类型的数据。例如,Filebeat 用于收集日志文件,Metricbeat 用于收集系统和服务的指标。Beats 的主要优点是轻量级和低资源消耗,可以直接在数据源(如服务器或容器)上运行。

Logstash 是一个强大的数据处理管道工具,可以接收来自多种源的数据,对数据进行复杂的转换和处理,然后将数据发送到多种目标。Logstash 的主要优点是功能强大和灵活,可以处理各种格式的数据,并支持多种输入、过滤器和输出插件。

以下是 Beats 和 Logstash 的一些主要区别:

  • 资源消耗:Beats 是轻量级的,通常在数据源上运行,占用的资源较少。Logstash 功能更强大,但占用的资源也更多,通常在单独的服务器或容器上运行。

  • 数据处理能力:Beats 的数据处理能力较弱,主要进行简单的数据解析和丰富。Logstash 的数据处理能力强,可以进行复杂的数据转换和处理。

  • 使用场景:如果你只需要收集特定类型的数据,并且数据处理需求较简单,那么使用 Beats 可能更合适。如果你需要处理各种格式的数据,或者需要进行复杂的数据处理,那么使用 Logstash 可能更合适。

在实际使用中,Beats 和 Logstash 通常会一起使用。例如,你可以使用 Beats 在服务器上收集数据,然后将数据发送到 Logstash 进行处理,最后由 Logstash 将处理过的数据发送到 Elasticsearch。

这篇关于Elasticsearch系列组件:Beats高效的日志收集和传输解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238742

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报