SiamBAN 训练过程debug记录

2023-10-19 06:59

本文主要是介绍SiamBAN 训练过程debug记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、一些参数的图片展示

1. train.py

 (1) main()

(2)def train

(3) def build_data_loader()

 (4) build_opt_lr

2. model_load.py

(1) def load_pretrain

(2) def remove_prefix

(3) def check_keys

3. dataset.py

 (1) class BANDataset(Dataset)

def shuffle

 (2)class SubDataset(object)

(3)def _filter_zero-->class SubDataset(object)

(4) def shuffle-->class SubDataset(object)

(5) def _find_dataset-->  class BANDataset(Dataset)

 (6) def get_positive_pair-->class SubDataset(object)

 (7)  _get_bbox-->  class BANDataset(Dataset)

4. lr_scheduler.py

(1) def _build_warm_up_scheduler

 (2) class WarmUPScheduler

 5.distributed.py

(1) class DistModule

 (2) broadcast_params

6. model_builder.py

7. augmentation.py

(1)  def __call__

 (2) _shift_scale_aug

8.point_target.py

二、一些关键部分的入口以及代码

1. 搭建主干网络以及构造模型

2. 加载Rsnet预训练骨干的参数 

3. 建立dataset loader

4. 导入数据集的入口

5. 训练时打印的出处

(1) 刚开始准备的阶段

(2) 开头时打印的config内容

 (3) Epoch 啥的

 (4) progress 啥的

(5) 模型的模块结构

6. 数据送入模型的入口

7. 分类标签和回归标签的创建

8. 损失函数的使用

9. 原输入图片为(511,511,3),resize到输入网络的尺寸的入口

10.正样本随机选16个,负样本随机选48个入口

11. 输入shape 通道转成对应的3通道 (3,255,255)以及(3,127,127)入口

12 日志文件创建入口

13. 更改数据集导入路径啥的设置

14. 截取训练数据的入口

15 .最终训练数据的每轮epoch的大小

三、 网络结构


一、一些参数的图片展示

1. train.py

 (1) main()

 optimizer

 lr_scheduler

dist_model

(2)def train

average_meter

 train_loader

data 

outputs

 batch_info (first)

v

 batch_info(second)

 average_meter

 v (batch_info)

(3) def build_data_loader()

train_dataset

 train_sampler

 train_loader

 (4) build_opt_lr

model

 

param

 m

 trainable_params  (first)

 trainable_params  (second)

  trainable_params  (third)

 optimizer

lr_scheduler  (first)

 lr_scheduler  (second)

2. model_load.py

(1) def load_pretrain

第一个

经过remove_prefix后

(2) def remove_prefix

(3) def check_keys

ckpt_keys 

 model_keys

 used_pretrainde_keys

 unused_pretrained_keys

 missing_keys (first)

 missing_keys (secend)

3. dataset.py

 (1) class BANDataset(Dataset)

cfg.DATASET

 《config文件中的设置》

subdata_cfg

self.all_dataset

self.pick

 dataset

 bbox

def shuffle

p, pick

《第一次循环》

 《循环结束后》

 (2)class SubDataset(object)

f

 meta_data (太长了,没截图完)  first

meta_data (second,经过_filter_zero之后的) 

 self.labels

 self.videos

template

 search

 template_box

 search_box

(3)def _filter_zero-->class SubDataset(object)

tracks

(4) def shuffle-->class SubDataset(object)

list

(5) def _find_dataset-->  class BANDataset(Dataset)

dataset

 (6) def get_positive_pair-->class SubDataset(object)

self

 video

 track_info

 (7)  _get_bbox-->  class BANDataset(Dataset)

bbox

4. lr_scheduler.py

(1) def _build_warm_up_scheduler

sc1

 sc2

 (2) class WarmUPScheduler

warmup

 normal

 self.lr_spaces

 5.distributed.py

(1) class DistModule

self.module

 (2) broadcast_params

p

6. model_builder.py

data

 template

 search

 label_cls

 label_loc

 zf 

 xf

 zf (neck)

 xf (neck)

 cls

 loc

 cls (log_softmax)

 cls_loss

 loc_loss

7. augmentation.py

(1)  def __call__

corp_bbox

bbox

 (2) _shift_scale_aug

crop_bbox_center (first)

 crop_bbox_center (second)

 crop_bbox

8.point_target.py

 self.point

points

 [0]

 [1]

cls (first)

 delta (first)

 delta (second)

[0]

 [1]

 [2]

 [3]

 pos

 neg

 position

 cls(second)

二、一些关键部分的入口以及代码

1. 搭建主干网络以及构造模型

train.py------- 267

model = ModelBuilder().cuda().train()

2. 加载Rsnet预训练骨干的参数 

 train.py-----271

    if cfg.BACKBONE.PRETRAINED:  # Truecur_path = os.path.dirname(os.path.realpath(__file__))  # cur_path: '/root/data/zjx/siamBAN/siamban_ori/tools'backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED)  # backbone_path:'/root/data/zjx/siamBAN/siamban_ori/tools/../pretrained_models/resnet50.model'load_pretrain(model.backbone, backbone_path)

3. 建立dataset loader

train.py----283

train_loader = build_data_loader()

4. 导入数据集的入口

dataset.py -----160

 for name in cfg.DATASET.NAMES:  # name: 'COCO' 这个就是拿出数据集的地方

更精确一点,裁剪后的数据集路径为

dataset.py -----34

 self.root = os.path.join(cur_path, '../../', root)  # '/root/data/zjx/siamBAN/siamban_ori/siamban/datasets/../../training_dataset/coco/crop511'

5. 训练时打印的出处

(1) 刚开始准备的阶段

“======================”
{'000000':[1.08,187.69,612.6700000000001,473.53]}
“======================”

dataset.py-----73

            for trk, frames in tracks.items():  # trk={str}'00'  frames={dict:1}{'000000':[1.08,187.69,612.6700000000001,473.53]}print("===================")print(frames)print("===================")

这些都是准备阶段,还没开始对数据集进行训练呢。

(2) 开头时打印的config内容

 train.py-----264

 logger.info("config \n{}".format(json.dumps(cfg, indent=4)))

 (3) Epoch 啥的

train.py-----241

                for cc, (k, v) in enumerate(batch_info.items()):  # cc:索引, (k,v)与之前的一样if cc % 2 == 0:info += ("\t{:s}\t").format(getattr(average_meter, k))  # ’Epoch:[1][20/17857] lr:0.0010000\n\tbatch_time:1.308527(1.368259)\t‘else:info += ("{:s}\n").format(getattr(average_meter, k))  # ’Epoch:[1][20/17857] lr:0.0010000\n\tbatch_time:1.308527(1.368259)\tdata_time:0.488958(0.661270)\n‘logger.info(info)

 (4) progress 啥的

 log_helper.py-----102

 logger.info('Progress: %d / %d [%d%%], Speed: %.3f s/iter, ETA %d:%02d:%02d (D:H:M)\n' %(i, n, i / n * 100,average_time,remaining_day, remaining_hour, remaining_min))

(5) 模型的模块结构

 train.py-----166

logger.info("model\n{}".format(describe(model.module)))

6. 数据送入模型的入口

train.py-----202

 outputs = model(data)

7. 分类标签和回归标签的创建

dataset.py-----272

cls, delta = self.point_target(bbox, cfg.TRAIN.OUTPUT_SIZE, neg)

8. 损失函数的使用

module_builder.py-----93

cls = self.log_softmax(cls)  # 先取softmax然后再log,值都为负数, Tensor:(28,25,25,2) <c>
cls_loss = select_cross_entropy_loss(cls, label_cls)  #  <c> 一个数 tensor(0.7612)# loc loss with iou loss
loc_loss = select_iou_loss(loc, label_loc, label_cls)

9. 原输入图片为(511,511,3),resize到输入网络的尺寸的入口

dataset.py----261

template, _ = self.template_aug(template_image,template_box,cfg.TRAIN.EXEMPLAR_SIZE,gray=gray)  # ndarry:(127,127,3)search, bbox = self.search_aug(search_image,search_box,cfg.TRAIN.SEARCH_SIZE,gray=gray)

augmentation.py-----126

image, bbox = self._shift_scale_aug(image, bbox, crop_bbox, size)

10.正样本随机选16个,负样本随机选48个入口

point_target.py---23

 def select(position, keep_num=16):  # keep_num 16 或 48num = position[0].shape[0]  # 举例 569if num <= keep_num:return position, numslt = np.arange(num)  # 举例 ndarray:(569:)  [0~568]np.random.shuffle(slt)  # 打乱slt = slt[:keep_num]  # ndarray:(48,)return tuple(p[slt] for p in position), keep_num

11. 输入shape 通道转成对应的3通道 (3,255,255)以及(3,127,127)入口

dataset.py----273

template = template.transpose((2, 0, 1)).astype(np.float32)  # ndarray:(3,127,127)
search = search.transpose((2, 0, 1)).astype(np.float32) 

12 日志文件创建入口

train.py-----259

 if cfg.TRAIN.LOG_DIR:  # Trueadd_file_handler('global',os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'),logging.INFO)

13. 更改数据集导入路径啥的设置

config.py-----129

__C.DATASET.NAMES = ('VID', 'YOUTUBEBB', 'DET', 'COCO', 'GOT10K', 'LASOT')__C.DATASET.VID = CN()
__C.DATASET.VID.ROOT = 'training_dataset/vid/crop511'
__C.DATASET.VID.ANNO = 'training_dataset/vid/train.json'
__C.DATASET.VID.FRAME_RANGE = 100
__C.DATASET.VID.NUM_USE = 100000__C.DATASET.YOUTUBEBB = CN()
__C.DATASET.YOUTUBEBB.ROOT = 'training_dataset/yt_bb/crop511'
__C.DATASET.YOUTUBEBB.ANNO = 'training_dataset/yt_bb/train.json'
__C.DATASET.YOUTUBEBB.FRAME_RANGE = 3
__C.DATASET.YOUTUBEBB.NUM_USE = 200000__C.DATASET.COCO = CN()
__C.DATASET.COCO.ROOT = 'training_dataset/coco/crop511'
__C.DATASET.COCO.ANNO = 'training_dataset/coco/train2017.json'
__C.DATASET.COCO.FRAME_RANGE = 1
__C.DATASET.COCO.NUM_USE = 100000__C.DATASET.DET = CN()
__C.DATASET.DET.ROOT = 'training_dataset/det/crop511'
__C.DATASET.DET.ANNO = 'training_dataset/det/train.json'
__C.DATASET.DET.FRAME_RANGE = 1
__C.DATASET.DET.NUM_USE = 200000__C.DATASET.GOT10K = CN()
__C.DATASET.GOT10K.ROOT = 'training_dataset/got_10k/crop511'
__C.DATASET.GOT10K.ANNO = 'training_dataset/got_10k/train.json'
__C.DATASET.GOT10K.FRAME_RANGE = 100
__C.DATASET.GOT10K.NUM_USE = 200000__C.DATASET.LASOT = CN()
__C.DATASET.LASOT.ROOT = 'training_dataset/lasot/crop511'
__C.DATASET.LASOT.ANNO = 'training_dataset/lasot/train.json'
__C.DATASET.LASOT.FRAME_RANGE = 100
__C.DATASET.LASOT.NUM_USE = 200000__C.DATASET.VIDEOS_PER_EPOCH = 1000000

14. 截取训练数据的入口

训练数据所用的图片(这里对应处理前的单张图片,处理后成为一个文件夹,依据所包含目标数量多少下面可能包含多张图片)的数量为设置的,self.use_num,若大于这个数则随机截取,小于这个则随机会重复选取直至满足

dataset.py-----66 、98

 self.pick = self.shuffle()
    def shuffle(self):lists = list(range(self.start_idx, self.start_idx + self.num))  #  {list:117266} 从0到117265,并且转成列表 <c>pick = []while len(pick) < self.num_use:  # 小于 使用的数量则循环 。若self.num_use小于lists 的长度则一次循环结束,截取这么长;若大于,则循环执行直至满足np.random.shuffle(lists)  # 随机打乱列表中的 索引顺序pick += listsreturn pick[:self.num_use]

15 .最终训练数据的每轮epoch的大小

可以一次性使用多个训练数据集,因为每轮epoch的总batch训练大小为20000000个,个数不够循环来凑。

dataset.py-----198

    def shuffle(self):pick = []m = 0while m < self.num:  # 当m 小于时一直执行这个循环p = []for sub_dataset in self.all_dataset:sub_p = sub_dataset.pick  # {list:100000}p += sub_p  # 如果是单个数据集的话,p每次都是那些np.random.shuffle(p)pick += pm = len(pick)logger.info("shuffle done!")logger.info("dataset length {}".format(self.num))return pick[:self.num]

16 . 保存模型参数

 train.py -----172

            if get_rank() == 0:  # 只在进程0上保存就行了,避免重复,而且保存的参数为 model.moduletorch.save({'epoch': epoch,'state_dict': model.module.state_dict(),'optimizer': optimizer.state_dict()},cfg.TRAIN.SNAPSHOT_DIR+'/checkpoint_e%d.pth' % (epoch))

三、 网络结构

ModelBuilder((backbone): ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer4): Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))))(neck): AdjustAllLayer((downsample2): AdjustLayer((downsample): Sequential((0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(downsample3): AdjustLayer((downsample): Sequential((0): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(downsample4): AdjustLayer((downsample): Sequential((0): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(head): MultiBAN((box2): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1)))))(box3): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1)))))(box4): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1))))))
)

这篇关于SiamBAN 训练过程debug记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238130

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优