鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...

本文主要是介绍鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dc095eb1cc5e14f82e0c354b2f86ccd5.png

本篇说清楚时间概念

读本篇之前建议先读鸿蒙内核源码分析(总目录)其他篇.

时间概念太重要了,在鸿蒙内核又是如何管理和使用时间的呢?

时间管理以系统时钟 g_sysClock 为基础,给应用程序提供所有和时间有关的服务。

bd99237cfb0d0bcb952fdc556cbde4d7.png

● 用户以秒、毫秒为单位计时.

● 操作系统以Tick为单位计时,这个认识很重要. 每秒的tick大小很大程度上决定了内核调度的次数多少.

● 当用户需要对系统进行操作时,例如任务挂起、延时等,此时需要时间管理模块对Tick和秒/毫秒进行转换。

熟悉两个概念:

● Cycle(周期):系统最小的计时单位。Cycle的时长由系统主时钟频率决定,系统主时钟频率就是每秒钟的Cycle数。

● Tick(节拍):Tick是操作系统的基本时间单位,由用户配置的每秒Tick数决定,可大可小.

怎么去理解他们之间的关系呢?看几个宏定义就清楚了.

4e2da22c3a0f9cf24634e227b02ca9d5.png

时钟周期(振荡周期)

在鸿蒙g_sysClock表示时钟周期,是CPU的赫兹,也就是上面说的Cycle,这是固定不变的,由硬件晶振的频率决定的. OsMain是内核运行的第一个C函数,首个子函数就是 osRegister,完成对g_sysClock的赋值

0ee4539454a16da9fce87e1142001d25.png

CPU周期也叫(机器周期)

在鸿蒙宏OS_CYCLE_PER_TICK表示机器周期,Tick由用户根据实际情况配置. 例如:主频为1G的CPU,其振荡周期为: 1吉赫 (GHz 109 Hz) = 1 000 000 000 Hz 当Tick为100时,则1 000 000 000/100 = 10000000 ,即一秒内可产生1千万个CPU周期.CPU就是用这1千万个周期去执行指令的.

指令周期

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。 对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

Tick硬中断函数

LITE_OS_SEC_BSS volatile UINT64 g_tickCount[LOSCFG_KERNEL_CORE_NUM] = {0};//tick计数器,系统一旦启动,一直在++, 为防止溢出,这是一个 UINT64 的变量

LITE_OS_SEC_DATA_INIT UINT32 g_sysClock;//系统时钟,是绝大部分部件工作的时钟源,也是其他所有外设的时钟的来源

LITE_OS_SEC_DATA_INIT UINT32 g_tickPerSecond;//每秒Tick数,鸿蒙默认是每秒100次,即:10ms

LITE_OS_SEC_BSS DOUBLEg_cycle2NsScale; //周期转纳秒级

/* spinlock fortask module */

LITE_OS_SEC_BSS SPIN_LOCK_INIT(g_tickSpin); //节拍器自旋锁

#define TICK_LOCK(state)                       LOS_SpinLockSave(&g_tickSpin, &(state))

/*

* Description : Tick interruption handler

*///节拍中断处理函数 ,鸿蒙默认10ms触发一次

LITE_OS_SEC_TEXT VOID OsTickHandler(VOID)

{

UINT32 intSave;

TICK_LOCK(intSave);

g_tickCount[ArchCurrCpuid()]++;//当前CPU核计数器

TICK_UNLOCK(intSave);

#ifdef LOSCFG_KERNEL_VDSO

OsUpdateVdsoTimeval();

#endif

#ifdef LOSCFG_KERNEL_TICKLESS

OsTickIrqFlagSet(OsTicklessFlagGet());

#endif

#if (LOSCFG_BASE_CORE_TICK_HW_TIME == YES)

HalClockIrqClear(); /* diff fromevery platform */

#endif

OsTimesliceCheck();//时间片检查

OsTaskScan(); /* task timeout scan *///任务扫描

#if (LOSCFG_BASE_CORE_SWTMR == YES)

OsSwtmrScan();//定时器扫描,看是否有超时的定时器

#endif

}

#ifdef __cplusplus

#if __cplusplus

}

解读

● g_tickCount记录每个CPU核tick的数组,每次硬中断都触发 OsTickHandler,每个CPU核单独计数.

● OsTickHandler是内核调度的动力,其中会检查任务时间片是否用完,定时器是否超时.主动delay的任务是否需要被唤醒,其本质是个硬中断,在HalClockInit硬时钟初始化时创建的,具体在硬中断篇中会详细讲解.

● TICK_LOCK是tick操作的自旋锁,宏原型LOS_SpinLockSave在自旋锁篇中已详细介绍.

功能函数

#define OS_SYS_MS_PER_SECOND   1000         //一秒多少毫秒

//获取自系统启动以来的Tick数

LITE_OS_SEC_TEXT_MINOR UINT64 LOS_TickCountGet(VOID)

{

UINT32 intSave;

UINT64 tick;

/*

* use core0's tick as system's timeline,

* the tick needs tobe atomic.

*/

TICK_LOCK(intSave);

tick = g_tickCount[0];//使用CPU core0作为系统的 tick数

TICK_UNLOCK(intSave);

returntick;

}

//每个Tick多少Cycle数

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CyclePerTickGet(VOID)

{

returng_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND;

}

//毫秒转换成Tick

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_MS2Tick(UINT32 millisec)

{

if (millisec == OS_MAX_VALUE) {

returnOS_MAX_VALUE;

}

return((UINT64)millisec * LOSCFG_BASE_CORE_TICK_PER_SECOND) / OS_SYS_MS_PER_SECOND;

}

//Tick转化为毫秒

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_Tick2MS(UINT32 tick)

{

return((UINT64)tick * OS_SYS_MS_PER_SECOND) / LOSCFG_BASE_CORE_TICK_PER_SECOND;

}

说明

● 在CPU篇中讲过,0号CPU核默认为主核,默认获取自系统启动以来的Tick数使用的是g_tickCount[0]

● 因每个CPU核的tick是独立计数的,所以g_tickCount中各值是不一样的.

● 系统的Tick数在关中断的情况下不进行计数,因为OsTickHandler本质是由硬中断触发的,屏蔽硬中断的情况下就不会触发OsTickHandler,自然也就不会有g_tickCount[ArchCurrCpuid()]++的计数,所以系统Tick数不能作为准确时间使用.

● 追问下,什么情况下硬中断会被屏蔽?

编程示例

前提条件:

● 使用每秒的Tick数LOSCFG_BASE_CORE_TICK_PER_SECOND的默认值100。

● 配好OS_SYS_CLOCK系统主时钟频率。

时间转换

VOID Example_TransformTime(VOID)

{

UINT32 ms;

UINT32 tick;

tick = LOS_MS2Tick(10000);    // 10000ms转换为tick

dprintf("tick = %d \n",tick);

ms = LOS_Tick2MS(100);        // 100tick转换为ms

dprintf("ms = %d \n",ms);

}

时间转换结果

tick = 1000

ms = 1000

时间统计和时间延迟

LITE_OS_SEC_TEXT UINT32 LOS_TaskDelay(UINT32 tick);

VOID Example_GetTime(VOID)

{

UINT32 cyclePerTick;

UINT64 tickCount;

cyclePerTick  = LOS_CyclePerTickGet();

if(0 != cyclePerTick) {

dprintf("LOS_CyclePerTickGet = %d \n", cyclePerTick);

}

tickCount = LOS_TickCountGet();

if(0 != tickCount) {

dprintf("LOS_TickCountGet = %d \n", (UINT32)tickCount);

}

LOS_TaskDelay(200);//延迟200个tick

tickCount = LOS_TickCountGet();

if(0 != tickCount) {

dprintf("LOS_TickCountGet after delay = %d \n", (UINT32)tickCount);

}

}

时间统计和时间延迟结果

LOS_CyclePerTickGet = 495000 //取决于CPU的频率

LOS_TickCountGet = 1 //实际情况不一定是1的

LOS_TickCountGet afterdelay = 201 //实际情况不一定是201,但二者的差距会是200

【编辑推荐】

【责任编辑:jianghua TEL:(010)68476606】

点赞 0

这篇关于鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/237997

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方