Java锁的膨胀过程以及一致性哈希对锁膨胀的影响

2023-10-19 03:20

本文主要是介绍Java锁的膨胀过程以及一致性哈希对锁膨胀的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、锁优化

在JDK6之前,通过synchronized来实现同步效率是很低的,被synchronized包裹的代码块经过javac编译后,会在代码块前后加上monitorentermonitorexit字节码指令,被synchronized修饰的方法则会被加上ACC_SYNCHRONIZED标识,不论是在字节码中如何表示,作用和功能都是一样的,线程要想执行同步代码块或同步方法,首先需要竞争锁。

synchronized保证了任意时刻最多只有一个线程可以竞争到锁,那么竞争不到锁的的线程该如何处理呢?

在JDK6之前,Java直接通过OS级别的互斥量(Mutex)来实现同步,获取不到锁的线程被阻塞挂起,直到持有锁的线程释放锁后再将其唤醒,这需要OS频繁的将线程从用户态切换到核心态,这个切换过程开销是很大的,OS需要暂停原线程并保存数据,唤醒新线程并恢复数据,因此synchronized也被称为“重量级锁”。

也正是由于性能原因,开发者慢慢摈弃了synchronized,投入ReentrantLock的怀抱。

官方意识到这个问题以后,便将“高效并发”作为JDK6的一个重要改进项目,经过开发团队的重重优化,如今synchronized的性能已经和ReentrantLock保持在一个数量级了,虽然还是慢一丢丢,但是官方表示未来synchronized仍然有优化的余地。

1.1、锁消除

设计一个类时,考虑到存在并发安全问题,往往会对代码块上锁。
但是有时候这个被设计为“线程安全”的类在使用时压根就不存在多线程竞争,那么还有什么理由加锁呢?

锁消除优化得益于逃逸分析技术的成熟,即时编译器在运行时会对代码进行扫描,会对不存在共享数据竞争的锁消除。
例如:在方法中(栈内存线程私有)实例化一个线程安全的类,该实例既没有传递给其他方法,又没有作为对象返回出去(没有发生逃逸),那么JVM就会对进行锁消除。

如下代码,尽管StringBuffer的append()是被synchronized修饰的,但是不存在线程竞争,锁会消除。

public String method(){StringBuffer sb = new StringBuffer();sb.append("1");//append()是被synchronized修饰的sb.append("2");return sb.toString();
}

1.2、锁粗化

由于锁的竞争和释放开销比较大,如果代码中对锁进行了频繁的竞争和释放,那么JVM会进行优化,将锁的范围适当扩大。

如下代码,在循环内使用synchronized,JVM锁粗化后,会将锁范围扩大到循环外。

public void method(){for (int i= 0; i < 100; i++) {synchronized (this){...}}
}

1.3、自旋锁

当有多个线程在竞争同一把锁时,竞争失败的线程如何处理?

两种情况:

  • 将线程挂起,锁释放后再将其唤醒。
  • 线程不挂起,进行自旋,直到竞争成功。

如果锁竞争非常激烈,且短时间得不到释放,那么将线程挂起效率会更高,因为竞争失败的线程不断自旋会造成CPU空转,浪费性能。

如果锁竞争并不激烈,且锁会很快得到释放,那么自旋效率会更高。因为将线程挂起和唤醒是一个开销很大的操作。

自旋锁的优化是针对“锁竞争不激烈,且会很快释放”的场景,避免了OS频繁挂起和唤醒线程。

1.4、自适应自旋锁

当线程竞争锁失败时,自旋和挂起哪一种更高效?

当线程竞争锁失败时,会自旋10次,如果仍然竞争不到锁,说明锁竞争比较激烈,继续自旋会浪费性能,JVM就会将线程挂起。

在JDK6之前,自旋的次数通过JVM参数-XX:PreBlockSpin设置,但是开发者往往不知道该设置多少比较合适,于是在JDK6中,对其进行了优化,加入了“自适应自旋锁”。

自适应自旋锁的大致原理:线程如果自旋成功了,那么下次自旋的最大次数会增加,因为JVM认为既然上次成功了,那么这一次也很大概率会成功。
反之,如果很少会自旋成功,那么下次会减少自旋的次数甚至不自旋,避免CPU空转。

1.5、锁膨胀

除了上述几种优化外,JDK6加入了新型的锁机制,不直接采用OS级的“重量级锁”,锁类型分为:偏向锁、轻量级锁、重量级锁。随着锁竞争的激烈程度不断膨胀,大大提升了竞争不太激烈的同步性能。

“synchronized锁的是对象,而非代码!”

每一个Java对象,在JVM中是存在对象头(Object Header)的,对象头中又分Mark Word和Klass Pointer,其中Mark Word就保存了对象的锁状态信息,其结构如下图所示:
在这里插入图片描述

无锁:初始状态
一个对象被实例化后,如果还没有被任何线程竞争锁,那么它就为无锁状态(01)。

偏向锁:单线程竞争
当线程A第一次竞争到锁时,通过CAS操作修改Mark Word中的偏向线程ID、偏向模式。如果不存在其他线程竞争,那么持有偏向锁的线程将永远不需要进行同步。

轻量级锁:多线程竞争,但是任意时刻最多只有一个线程竞争
如果线程B再去竞争锁,发现偏向线程ID不是自己,那么偏向模式就会立刻不可用。即使两个线程不存在竞争关系(线程A已经释放,线程B再去获取),也会升级为轻量级锁(00)。

重量级锁:同一时刻多线程竞争
一旦轻量级锁CAS修改失败,说明存在多线程同时竞争锁,轻量级锁就不适用了,必须膨胀为重量级锁(10)。此时Mark Word存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程必须进入阻塞状态。


2、锁膨胀实战

说了这么多,理论终归是理论,不如实战一把来的直接。

通过编写一些多线程竞争代码,以及打印对象的头信息,来分析哪些情况下锁会膨胀,以及膨胀成哪种类型的锁。

2.1、jol工具

openjdk提供了jol工具,可以打印对象的内存布局信息,依赖如下:

<dependency><groupId>org.openjdk.jol</groupId><artifactId>jol-core</artifactId><version>0.9</version>
</dependency>

2.2、锁膨胀测试代码

程序启动时先sleep5秒是为了等待偏向锁系统启动。

编写一段锁逐步膨胀的测试代码,如下所示:

public class LockTest {static class Lock{}public static void main(String[] args) {sleep(5000);Lock lock = new Lock();System.err.println("无锁");print(lock);synchronized (lock) {//main线程首次竞争锁,可偏向System.err.println("偏向锁");print(lock);}new Thread(()->{synchronized (lock){//线程A来竞争,偏向线程ID不是自己,升级为:轻量级锁System.err.println("轻量级锁");print(lock);}},"Thread-A").start();sleep(2000);new Thread(()->{synchronized (lock){sleep(1000);}},"Thread-B").start();//确保线程B启动并获得锁,sleep 100毫秒sleep(100);synchronized (lock){//main线程竞争时,线程B还未释放,多线程同时竞争,升级为:重量级锁System.err.println("重量级锁");print(lock);}}static void print(Object o){System.err.println("==========对象信息开始...==========");System.out.println(ClassLayout.parseInstance(o).toPrintable());//jol异步输出,防止打印重叠,sleep1秒sleep(1000);System.err.println("==========对象信息结束...==========");}static void sleep(long l){try {Thread.sleep(l);} catch (InterruptedException e) {e.printStackTrace();}}
}

2.3、输出分析

运行后分析一下控制台输出信息,这里贴上截图并写上注释:

无锁
在这里插入图片描述

偏向锁
在这里插入图片描述

轻量级锁
在这里插入图片描述

重量级锁
在这里插入图片描述

以上,就是JVM中锁逐步膨胀的过程,另外:锁不支持回退撤销。

2.4、锁释放

偏向锁是不会主动释放的,只要没有其他线程竞争,会永远偏向持有锁的线程,这样在以后的执行中,都不用再进行同步处理了,节省了同步开销。

public static void main(String[] args) {sleep(5000);Lock lock = new Lock();synchronized (lock){System.err.println("Main线程首次竞争锁");print(lock);}System.out.println();sleep(1000);System.err.println("同步代码块退出以后");print(lock);
}

在这里插入图片描述

轻量级和重量级锁均会主动释放,这里只贴出轻量级锁。

public static void main(String[] args) {sleep(5000);Lock lock = new Lock();synchronized (lock){//偏向锁}new Thread(()->{synchronized (lock){System.err.println("轻量级锁");print(lock);}},"Thread-A").start();sleep(5000);System.err.println("\n线程A释放锁后");print(lock);
}

在这里插入图片描述

重量级锁类似,这里就不贴测试结果了。


3、一致性哈希对锁膨胀的影响

一个对象如果计算过哈希码,就应该一直保持该值不变(强烈推荐但不强制,因为用户可以重载hashCode()方法按自己的意愿返回哈希码)。

在Java中,如果类没有重写hashCode(),那么会自动继承自Object::hashCode(),Object::hashCode()就是一致性哈希,只要计算过一次,就会将哈希码写入到对象头中,且永远不会改变。

和具体的哈希算法有关,JVM里有五种哈希算法,通过参数-XX:hashCode=[0|1|2|3|4]指定。

只要对象计算过一致性哈希,偏向模式就置为0了,也就意味着该对象锁不能再偏向了,最低也会膨胀会轻量级锁。
如果对象锁处于偏向模式时遇到计算一致性哈希请求,那么会跳过轻量级锁模式,直接膨胀为重量级锁。

锁膨胀为轻量级或重量级锁后,Mark Word中保存的分别是线程栈帧里的锁记录指针和重量级锁指针,已经没有位置再保存哈希码,GC年龄了,那么这些信息被移动到哪里去了呢?

升级为轻量级锁时,JVM会在当前线程的栈帧中创建一个锁记录(Lock Record)空间,用于存储锁对象的Mark Word拷贝,哈希码和GC年龄自然保存在此,释放锁后会将这些信息写回到对象头。

升级为重量级锁后,Mark Word保存的重量级锁指针,代表重量级锁的ObjectMonitor类里有字段记录无锁状态下的Mark Word,锁释放后也会将信息写回到对象头。

代码实战,跳过偏向锁,直接膨胀轻量级锁

public static void main(String[] args) {sleep(5000);Lock lock = new Lock();//没有重写,一致性哈希,重写后无效lock.hashCode();synchronized (lock){System.err.println("本应是偏向锁,但是由于计算过一致性哈希,会直接膨胀为轻量级锁");print(lock);}
}

在这里插入图片描述

偏向锁过程中遇到一致性哈希计算请求,立马撤销偏向模式,膨胀为重量级锁

public static void main(String[] args) {sleep(5000);Lock lock = new Lock();synchronized (lock){//没有重写,一致性哈希,重写后无效lock.hashCode();System.err.println("偏向锁过程中遇到一致性哈希计算请求,立马撤销偏向模式,膨胀为重量级锁");print(lock);}
}

在这里插入图片描述

4、锁性能测试

这里只做了一个简单的测试,实际应用环境比测试环境要复杂的多。

单线程下,各类型锁性能测试:

public class PerformanceTest {final static int TEST_COUNT = 100000000;static class Lock{}public static void main(String[] args) {sleep(5000);System.err.println("各类型锁性能测试");Lock lock = new Lock();long start;long end;start = System.currentTimeMillis();for (int i = 0; i < TEST_COUNT; i++) {}end = System.currentTimeMillis();System.out.println("无锁:" + (end - start));//偏向锁biasedLock(lock);start = System.currentTimeMillis();for (int i = 0; i < TEST_COUNT; i++) {synchronized (lock) {}}end = System.currentTimeMillis();System.out.println("偏向锁耗时:" + (end - start));//轻量级锁lightweightLock(lock);start = System.currentTimeMillis();for (int i = 0; i < TEST_COUNT; i++) {synchronized (lock) {}}end = System.currentTimeMillis();System.out.println("轻量级锁耗时:" + (end - start));//重量级锁weightLock(lock);start = System.currentTimeMillis();for (int i = 0; i < TEST_COUNT; i++) {synchronized (lock) {}}end = System.currentTimeMillis();System.out.println("重量级锁耗时:" + (end - start));}static void biasedLock(Object o){synchronized (o){}}//将锁升级为轻量级static void lightweightLock(Object o){biasedLock(o);Thread thread = new Thread(() -> {synchronized (o) {}});thread.start();try {thread.join();} catch (InterruptedException e) {e.printStackTrace();}}//将锁升级为重量级static void weightLock(Object o){lightweightLock(o);Thread t1 = new Thread(() -> {synchronized (o){sleep(1000);}});Thread t2 = new Thread(() -> {synchronized (o){sleep(1000);}});t1.start();t2.start();try {t1.join();t2.join();} catch (InterruptedException e) {e.printStackTrace();}}static void sleep(long l){try {Thread.sleep(l);} catch (InterruptedException e) {e.printStackTrace();}}
}
各类型锁性能测试
无锁:6
偏向锁耗时:252
轻量级锁耗时:2698
重量级锁耗时:1471

由于是单线程,不涉及锁竞争,重量级锁反而比轻量级锁更快,因为不需要OS对线程进行额外的调度,线程无需挂起和唤醒,而且不用拷贝Mark Word。

在多线程竞争环境下,重量级锁性能下降是毋庸置疑的,如下测试:

public static void main(String[] args) throws InterruptedException {System.err.println("多线程测试");Lock lock = new Lock();long start;long end;//轻量级锁lightweightLock(lock);start = System.currentTimeMillis();for (int i = 0; i < TEST_COUNT; i++) {synchronized (lock) {}}end = System.currentTimeMillis();System.out.println("轻量级锁耗时:" + (end - start));//重量级锁weightLock(lock);Thread t1 = new Thread(() -> {for (int i = 0; i < TEST_COUNT / 2; i++) {synchronized (lock) {}}});Thread t2 = new Thread(() -> {for (int i = 0; i < TEST_COUNT / 2; i++) {synchronized (lock) {}}});t1.start();t2.start();start = System.currentTimeMillis();t1.join();t2.join();end = System.currentTimeMillis();System.out.println("重量级锁耗时:" + (end - start));
}
多线程测试
轻量级锁耗时:2581
重量级锁耗时:4460

实际的应用环境远比测试环境复杂的多,锁性能和线程竞争的激烈程度、锁占用的时间也有很大关系,测试结果仅供参考。


你可能感兴趣的文章:

  • AQS源码导读
  • 摊牌了,我要手写一个RPC
  • ThreadLocal源码解析
  • CMS与三色标记算法
  • 大白话理解可达性分析算法

这篇关于Java锁的膨胀过程以及一致性哈希对锁膨胀的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/236943

相关文章

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再