OpenGL(九) 三维混色和深度缓存设置

2023-10-18 21:40

本文主要是介绍OpenGL(九) 三维混色和深度缓存设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

颜色的混合在现实世界中非常常见,例如隔着有色玻璃观看物体,此时在观察者严重呈现出来物体的颜色就是玻璃的颜色和物体的颜色的混合。

OpenGL在RGBA颜色模式下使用函数glenable(GL_BLEND)开启混色功能,使用glDisable(GL_BLEDN)关闭混色功能。混色功能开启之后,最终显示的颜色的RGBA分量是两个颜色各自的RGBA分量共同决定的。


源因子和目标因子


需要混合的两个颜色一个称为源颜色,一个称为目标颜色,而定义一个颜色是源颜色还是目标颜色的唯一依据是:先绘制的颜色是“目标颜色”,后绘制的是“源颜色”,跟物体的深度无关。

混色运算的实现是源颜色和目标颜色分别乘上一个“源因子”和“目标因子”后经过算术运算实现的。使用函数glBlenFunc来设置源因子和目标因子。函数原型是:

void   glBlendFunc (GLenum sfactor, GLenum dfactor);


第一个参数用于设置源因子,第二个参数用于设置目标因子,这两个参数可以是多种值,下边是一些比较常用的设置:

  • GL_ZERO:表示使用0.0作为因子,实际上相当于不使用这种颜色参与混合运算。 
  • GL_ONE:  表示使用1.0作为因子,实际上相当于完全的使用了这种颜色参与混合运算。 
  • GL_SRC_ALPHA:表示使用源颜色的alpha值来作为因子。 
  • GL_DST_ALPHA:表示使用目标颜色的alpha值来作为因子。  
  • GL_ONE_MINUS_SRC_ALPHA:表示用1.0减去源颜色的alpha值来作为因子。
  • GL_ONE_MINUS_DST_ALPHA:表示用1.0减去目标颜色的alpha值来作为因子。

如果不对源因子和目标因子进行设置,默认情况是采用设置glBlendFunc(GL_ONE,GL_ZERO),即完全使用源颜色,覆盖目标颜色。

最常用的设置是glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);这种情况表示源颜色乘以自身的Alpha值,目标颜色乘以1.0减去源颜色的Alpha值,这样一来,源颜色的Alpha值越大,则产生的新颜色中源颜色所占比例就越大,而目标颜色所占比例则减少。这种情况相当于使用源颜色Alpha的数值大小简单模拟玻璃(源颜色)的不透明度。


深度缓存


深度缓存记录了每一个像素距离观察点的距离,启用深度缓存功能之后,程序会忠实的执行只绘制最上层像素点,覆盖比最上层像素点深度更深的像素点,而颜色透明度则被忽略。

要解决这一问题,需要在绘制半透明模型之前“冻结”深度缓存区,将深度缓存区设置为只读的,这样一来,虽然半透明物体被绘制上去了,深度缓存区还保持在原来的状态,即当前绘制的模型的深度不会影响到深度缓冲区的状态。等绘制完所有需要混色的模型之后,再把深度缓存区设置为可读可写状态。

调用glDepthMask(GL_FALSE),可以把深度缓存区设置为只读形式,使用glDepthMask(GL_TRUE)将深度缓存区设置为可读可写形式。


示例


以下程序的功能是在三维空间中绘制3个平面,颜色分别是RGB,R在最下边,G在中间,B在最上层,实现3个颜色的混色,可以看到,RGB三者重合的区域混合出了白色:

   


   


程序代码:

#include <glut.h> GLfloat angle = 0.0f;void myDisplay(void) 
{//List 1 定义模型视图矩阵if(!glIsList((GLuint)1)){glNewList(1,GL_COMPILE);glMatrixMode(GL_PROJECTION);glLoadIdentity();gluPerspective(60,1,2,50);glMatrixMode(GL_MODELVIEW);glLoadIdentity();gluLookAt(0,-10,10,0,0,0,0,1,0);glEndList();}glEnable(GL_DEPTH_TEST);   //深度缓存glEnable(GL_BLEND);  //开启混色//设置源因子和目标因子glBlendFunc(GL_ONE,GL_ONE);glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);glCallList(1);glDepthMask(GL_FALSE); //设置深度缓冲区为只读模式glRotatef(angle,1,0,0);glRotatef(angle,0,1,0);glRotatef(angle,1,0,1);glBegin(GL_QUADS);//最底层的面  先绘制的是目标,红色框glColor4f(1,0,0,0.5);glVertex3f(-2,-5,-5);glVertex3f(8,-5,-5);glVertex3f(8,5,-5);glVertex3f(-2,5,-5);//中间的面,第二绘制的源1  绿色框glColor4f(0,1,0,0.5);glVertex3f(-4.5,-5,-2);glVertex3f(5.5,-5,-2);glVertex3f(5.5,5,-2);glVertex3f(-4.5,5,-2);//顶层的面,第三绘制的源2  蓝色框glColor4f(0,0,1,0.5);glVertex3f(-7,-5,1);glVertex3f(3,-5,1);glVertex3f(3,5,1);glVertex3f(-7,5,1);glEnd();glDepthMask(GL_TRUE); //恢复深度缓冲区读写glutSwapBuffers();
}  void myIdle(void) 
{    angle+=0.2f; if( angle >= 360.0f )    angle = 0.0f;    myDisplay();
} int main(int argc, char* argv[]) 
{   glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);glutInitWindowPosition(200, 200);  glutInitWindowSize(400, 400);   glutCreateWindow("OpenGL"); glutDisplayFunc(&myDisplay);   glutIdleFunc(&myIdle);     glutMainLoop();   return 0; 
}


转载于:https://www.cnblogs.com/mtcnn/p/9411918.html

这篇关于OpenGL(九) 三维混色和深度缓存设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235294

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按