三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系

本文主要是介绍三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三相交错LLC软启动控制驱动波形分析

文章目录

  • 三相交错LLC软启动控制驱动波形分析
  • 一、电路原理
  • 二、时序分析
  • 三、环路分析
  • 四、控制策略
      • 1.软启动驱动波形趋势
      • 2.软启动驱动波形占空图
      • 3.软启动驱动波形详细图
      • 4.软启动代码分析
      • 5.Debug调试界面
      • 5.死区时间与实际输出
        • 5.1 死区时间50--对应占空比 29.31%
        • 5.2 死区时间50--对应占空比26%
        • 5.3 死区周期值105--对应占空比33%
        • 5.4 死区周期90 --对应占空比36%
        • 5.5 死区时间60--对应占空比40.35%
  • 五、总结

在开关电源技术中,三相交错LLC拓扑DC-DC电源软启动驱动控制是一种先进的电源管理技术,具有高效、可靠、精确控制等优点。本文将深入分析三相交错LLC拓扑DC-DC电源软启动驱动控制过程的作用、电路原理、时序分析、环路分析、控制策略及总结。

一、电路原理

三相交错LLC拓扑DC-DC电源软启动驱动控制电路主要由三相交错并联的半桥变换器、驱动电路和保护电路组成。半桥变换器由两个开关管和相应的磁性元件组成,通过控制开关管的开通和关断实现直流电压的变换。驱动电路则负责生成三相交错的PWM驱动信号,以控制变换器中开关管的开通和关断。保护电路则对电源的输出电压、输出电流等参数进行监测,当出现过电压、过电流等情况时,及时关断开关管以保护变换器和负载的安全。

二、时序分析

在三相交错LLC拓扑DC-DC电源软启动驱动控制过程中,三相交错的PWM驱动信号按照特定的时序轮流导通和关断,实现电源系统的平滑启动。具体的时序过程可以通过使用逻辑电平和时间图等方式进行描述。在逻辑电平方面,三相交错的PWM驱动信号通常具有相同的逻辑高电平和逻辑低电平,但彼此之间具有一定的相位差。在时间图方面,可以通过绘制每个PWM驱动信号的时序图来直观地展示其时序关系。

三、环路分析

三相交错LLC拓扑DC-DC电源软启动驱动控制过程可以看作一个闭环控制系统。在该系统中,控制环路由电压采样环、电流采样环和PWM驱动环组成。电压采样环负责监测电源系统的输出电压,根据采样结果调整PWM驱动信号的占空比,以实现对输出电压的精确控制。电流采样环则负责监测电源系统的输出电流,以确保输出电流不超过安全范围。

四、控制策略

在三相交错LLC拓扑DC-DC电源软启动驱动控制过程中,控制策略是实现电源系统高效、可靠、精确控制的关键。下面我们以电压控制模式为例,简要介绍控制策略的实现过程:

电压采样:通过电压采样环对电源系统的输出电压进行采样,将采样结果与期望的电压值进行比较,得到误差信号。
误差放大:将误差信号放大后,送入PWM驱动环。
PWM驱动:PWM驱动环根据误差信号调整PWM驱动信号的占空比,从而改变开关管的导通时间和关断时间,进而调整电源系统的输出电压。
保护措施:当电源系统的输出电流超过安全范围时,电流采样环会发出信号,关断开关管以保护电源系统和负载的安全。

1.软启动驱动波形趋势

在这里插入图片描述

2.软启动驱动波形占空图

在这里插入图片描述

3.软启动驱动波形详细图

在这里插入图片描述

4.软启动代码分析

				SoftTime ++ ;if(SoftTime == 1 ){if(pwm_start_flag ==0 ){MX_TIM8_Init();MX_TIM1_Init();__HAL_TIM_SET_PRESCALER(&htim8, 3);__HAL_TIM_SET_PRESCALER(&htim1, 3);MX_PWM_Start();pwm_start_flag = 1;pwm_stop_flag = 0;}}else if(SoftTime == 2 ){if(pwm_stop_flag == 0){
//								MX_PWM_Stop();__HAL_TIM_SET_PRESCALER(&htim1, 24);__HAL_TIM_SET_PRESCALER(&htim8, 24);pwm_start_flag =  0;pwm_stop_flag = 1;}}else if(SoftTime == 8 ){MX_PWM_Stop();}else if(SoftTime == 40 ){SoftTime = 0;}

5.Debug调试界面

在这里插入图片描述

5.死区时间与实际输出

5.1 死区时间50–对应占空比 29.31%

在这里插入图片描述

5.2 死区时间50–对应占空比26%

在这里插入图片描述

5.3 死区周期值105–对应占空比33%

在这里插入图片描述

5.4 死区周期90 --对应占空比36%

在这里插入图片描述

5.5 死区时间60–对应占空比40.35%

在这里插入图片描述

五、总结

三相交错LLC拓扑DC-DC电源软启动驱动控制是一种先进的开关电源技术,具有高效、可靠、精确控制等优点。通过对电路原理、时序分析、环路分析和控制策略等方面的深入分析,我们可以更好地理解这一技术的实现过程和原理。在实际应用中,可以根据不同的电源系统和运行条件,对三相交错LLC拓扑DC-DC电源软启动驱动控制进行优化,以满足系统的性能要求并延长电源的使用寿命。

这篇关于三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234605

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1