使用TF-IDF对Tweets做summarization

2023-10-18 17:40

本文主要是介绍使用TF-IDF对Tweets做summarization,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本自动文摘(automatic summarization/abstracting)是利用计算机自动实现文本分析、内容归纳和摘要自动生成的技术。这项技术在互联网技术迅速发展、海量信息急速膨胀的今天,具有非常重要的用途。Tweets作为社交媒体内容的典型代表,具有极大的研究价值。本文尝试将经典的TF-IDF算法应用到tweets上提取原文中最有代表性的句子做automatic summarization。

写文章不容易,如果这篇文章对你有帮助,请给我的github仓库加个star~
github项目地址

0. 认识数据

本文中使用的tweets数据由以下几个属性组成:

  • id. Twitter API 中下载数据自带的id;
  • topic. 命名实体识别的结果,作为topic使用;
  • sentiment. 情感分析的结果,在本文中没有使用;
  • body. Tweets正文,summarization作用的具体对象;

E.g:

id  topic   sentiment   body
628949369883000832  @microsoft  negative    dear @Microsoft the newOoffice for Mac is grea...

1. 预处理

第一步是句子级的tokenization,因为我们的任务目标是提取句子。
第二步是清理数据。 直观地讲,像URL这样的字符串,“@ …”,标题和标点符号很少有助于句子的重要性。 另外,在大多数的NLP任务中,stopwords通常都会被视为噪音。 这些东西应该被删除。
第三步,为tf-idf计算创建一个遵循原始句子序列的过滤单词列表。

示例预处理输出:

Number of sentences:158
['dear @Microsoft the newOoffice for Mac is great and all, but no Lync update?',"C'mon.","@Microsoft how about you make a system that doesn't eat my friggin discs.",'This is the 2nd time this has happened and I am so sick of it!',"I may be ignorant on this issue but... should we celebrate @Microsoft's "'parental leave changes?']
------------------------------------------------------------------------------------
Number of unique words after filtering:591
[['dear', 'newooffice', 'mac', 'great', 'lync', 'update'],['cmon'],['microsoft', 'make', 'system', 'doesnt', 'eat', 'friggin', 'discs'],['2nd', 'time', 'happened', 'sick'],['may', 'ignorant', 'issue', 'celebrates', 'parental', 'leave', 'changes']]

3. 计算TF-IDF值

数学意义上,tf-idf可以表示为如下公式:
这里写图片描述
在本文中,tf代表经过预处理后的单词x在输入句子中出现的频率,N代表tokenized后的句子总数,df代表包含单词x的句子总数。

算法实现中,我使用textacy,一个基于spaCy的python库。由于我只关心每个句子的有意义的单词,所以我将此技术应用在上一步创建的过滤单词列表上。

def tfidf(data_tokenized):'''Caculate tf-idf matrix.:param data_tokenized: A sequence of tokenized documents, where each document is a sequence of (str) terms.:return: vectorizer, instance of textacy.vsm.Vectorizer.calculate , tf-idf matrix whose row is document, column is term'''vectorizer = Vectorizer(weighting='tfidf')term_matrix = vectorizer.fit_transform(data_tokenized).todense()  # dense matrix means most of the elements are nonzeroreturn vectorizer, term_matrix

正如我在代码注释中提到的,返回term_matrix是一个单词-文档矩阵,也称为“bag-of-words”。 在这种情况下,term_matrix包含158个文档和591个单词,它们与在预处理步骤中创建的过滤后的句子数量和去掉重复词的单词数量相对应。

4. 提取最具代表性的句子作summarization

由于tweet很短,一些广泛使用的技术,如position weights和biased heading weights不适合此任务。在目前阶段,使用每个句子的tf-idf值的总和排序句子。

def rank_sentences(sents, filtered_words, vectorizer, term_matrix, top_n=3):'''Select top n important sentence.:param sents: a list containing sentences.:param filtered_words: a tokenized sentences list whose element is word list:param vectorizer: instance of textacy.vsm.Vectorizer:param term_matrix: tf-idf matrix whose row is document, column is term:param top_n: the selecting number:return: a list containing top n important sentences'''tfidf_sent = [[term_matrix[index, vectorizer.vocabulary[token]] for token in sent] for index, sent inenumerate(filtered_words)]  # Get tfidf value for noun word in each sentencesent_values = [sum(sent) for sent in tfidf_sent]  # Caculate whole tfidf weights for each sentenceranked_sent = sorted(zip(sents, sent_values), key=lambda x: x[1], reverse=True)  # Sort sentence at descending orderreturn [sent[0] for sent in ranked_sent[:top_n]]

示例最终结果输出:

["@eyesonfoxorg @Microsoft I'm still using Vista on one & Win-7 on "'another, Vista is a dinosaur, unfortunately I may use a free 10 with limits','W/ all the $$$ and drones U have working 4 U, maybe U guys could get it ''right the 1st time?',"@Lumia #Lumia @Microsoft 2nd, you guys haven't released a lumia that has a "'QHD screen, or takes video in 2k resolution yet.']

参考文献

  1. Sentence Extraction by tf/idf and Position Weighting from Newspaper Articles
  2. Automatic Summarization
  3. 统计自然语言处理(第2版)

这篇关于使用TF-IDF对Tweets做summarization的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234161

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND