最优化方法:共轭梯度法(Conjugate Gradient)

2023-10-18 17:30

本文主要是介绍最优化方法:共轭梯度法(Conjugate Gradient),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/pipisorry/article/details/39891197

共轭梯度法(Conjugate Gradient)

共轭梯度法(英语:Conjugate gradient method),是求解数学特定线性方程组的数值解的方法,其中那些矩阵为对称和正定。共轭梯度法是一个迭代方法,它适用于稀疏矩阵线性方程组,因为这些系统对于像Cholesky分解这样的直接方法太大了。这种方程组在数值求解偏微分方程时很常见。共轭梯度法也可以用于求解无约束的最优化问题。

在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组\boldsymbol{Ax}=\boldsymbol{b}的迭代方法。共轭梯度法可以从不同的角度推导而得,包括作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。

双共轭梯度法提供了一种处理非对称矩阵情况的推广。

基础

共轭向量

显然,共轭向量是线性无关向量.

初等变分原理

最速下降算法的有关性质

范数的‖・‖A的定义为‖x‖A=(Ax,x)。

上面定理表明,最速下降法从任何一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差很大时λ1<<λn,最速下降法收敛速度很慢,很少用于实际计算.

分析最速下降法收敛较慢的原因,可以发现,负梯度方向从局部来看是二次函数的最快下降方向,但是从整体来看,却并非最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...代替最速(0)下降法中的负梯度方向,使迭代法对任意给定的初始点x具有有限步收敛性,即经有限步就可以(在理论上)得到问题的准确解.

皮皮blog


共轭梯度算法

计算共轭梯度算法同时构造出关于A共轭的向量pi

求解Ax = b的算法,其中A是实对称正定矩阵。

x 0 := 0
k := 0
r 0 := b-Ax
repeat until r k is "sufficiently small":
k := k + 1
if k = 1
p 1 := r 0
else
p k := r k − 1 + r k − 1 ⊤ r k − 1 r k − 2 ⊤ r k − 2   p k − 1 {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}} {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
end if
α k := r k − 1 ⊤ r k − 1 p k ⊤ A p k {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}} {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
x k := x k-1 + α k p k
r k := r k-1 - α k A p k
end repeat
结果为 x k
或者


共轭梯度法评价

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点, 共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:
注:绿色为梯度下降法,红色代表共轭梯度法


from:http://blog.csdn.net/pipisorry/article/details/39891197

ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]

[数值分析 钟尔杰]


转载于:https://my.oschina.net/u/3579120/blog/1508363

这篇关于最优化方法:共轭梯度法(Conjugate Gradient)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234101

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求

MySQL 打开binlog日志的方法及注意事项

《MySQL打开binlog日志的方法及注意事项》本文给大家介绍MySQL打开binlog日志的方法及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、默认状态二、如何检查 binlog 状态三、如何开启 binlog3.1 临时开启(重启后失效)

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.