最优化方法:共轭梯度法(Conjugate Gradient)

2023-10-18 17:30

本文主要是介绍最优化方法:共轭梯度法(Conjugate Gradient),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/pipisorry/article/details/39891197

共轭梯度法(Conjugate Gradient)

共轭梯度法(英语:Conjugate gradient method),是求解数学特定线性方程组的数值解的方法,其中那些矩阵为对称和正定。共轭梯度法是一个迭代方法,它适用于稀疏矩阵线性方程组,因为这些系统对于像Cholesky分解这样的直接方法太大了。这种方程组在数值求解偏微分方程时很常见。共轭梯度法也可以用于求解无约束的最优化问题。

在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组\boldsymbol{Ax}=\boldsymbol{b}的迭代方法。共轭梯度法可以从不同的角度推导而得,包括作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。

双共轭梯度法提供了一种处理非对称矩阵情况的推广。

基础

共轭向量

显然,共轭向量是线性无关向量.

初等变分原理

最速下降算法的有关性质

范数的‖・‖A的定义为‖x‖A=(Ax,x)。

上面定理表明,最速下降法从任何一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差很大时λ1<<λn,最速下降法收敛速度很慢,很少用于实际计算.

分析最速下降法收敛较慢的原因,可以发现,负梯度方向从局部来看是二次函数的最快下降方向,但是从整体来看,却并非最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...代替最速(0)下降法中的负梯度方向,使迭代法对任意给定的初始点x具有有限步收敛性,即经有限步就可以(在理论上)得到问题的准确解.

皮皮blog


共轭梯度算法

计算共轭梯度算法同时构造出关于A共轭的向量pi

求解Ax = b的算法,其中A是实对称正定矩阵。

x 0 := 0
k := 0
r 0 := b-Ax
repeat until r k is "sufficiently small":
k := k + 1
if k = 1
p 1 := r 0
else
p k := r k − 1 + r k − 1 ⊤ r k − 1 r k − 2 ⊤ r k − 2   p k − 1 {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}} {\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
end if
α k := r k − 1 ⊤ r k − 1 p k ⊤ A p k {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}} {\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
x k := x k-1 + α k p k
r k := r k-1 - α k A p k
end repeat
结果为 x k
或者


共轭梯度法评价

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点, 共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
下图为共轭梯度法和梯度下降法搜索最优解的路径对比示意图:
注:绿色为梯度下降法,红色代表共轭梯度法


from:http://blog.csdn.net/pipisorry/article/details/39891197

ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]

[数值分析 钟尔杰]


转载于:https://my.oschina.net/u/3579120/blog/1508363

这篇关于最优化方法:共轭梯度法(Conjugate Gradient)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/234101

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A