FTC局部路径规划代码分析

2023-10-18 16:44

本文主要是介绍FTC局部路径规划代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前置知识:

costmap_2d::Costmap2DROS costmap;

costmap_2d::Costmap2DROS 是一个ROS包中提供的用于处理2D成本地图的类。它是一个高级的接口,通常用于与ROS导航栈中的导航规划器和本地路径跟踪器等模块进行集成。

costmap 是一个指向 Costmap2DROS 对象的指针。通常,通过这个指针,你可以访问与导航和路径跟踪相关的成本地图信息,以及执行一些与导航相关的操作,如查询障碍物信息、获取机器人的当前全局位置等。这个指针指向了整个ROS导航栈中的成本地图管理器。

costmap_2d::Costmap2D costmap_map_;

costmap_2d::Costmap2D 是一个用于表示二维成本地图的类,通常用于底层的地图管理和处理。

costmap_map_ 是一个指向 Costmap2D 对象的指针。这个指针通常用于直接访问成本地图的数据,如地图的大小、分辨率、栅格信息以及每个栅格的成本值等。这个指针通常用于执行与成本地图的低级操作,如路径规划和避障算法。

costmap->getOrientedFootprint(std::cector<geometry_msgs::Point>& oriented_footprint)

构建机器人在当前姿态下的足迹,结果将存储在参数 oriented_footprint 中, 这个函数可以返回机器人当前位置的足迹, 获取的是一个机器人在世界坐标系下的坐标, 通常用于碰撞检测或生成局部代价地图

costmap->getRobotFootprint()

获取机器人的轮廓, 表现为一系列std::vector<geometry_msgs::Point>的形式

costmap->getRobotFootprintPolygon()

获取机器人的轮廓, 表现为一个凸多边形, geometry_msgs::Polygon 类型

initialize(std::string name, tf2_ros::Buffer* tf, costmap_2d::Costmap2DROS* costmap_ros)

参数:

name

tf

costmap_ros 一个ROS的上层接口

发布者:

global_plan_pub : 将global_planner中发过来的路径不经过任何处理发布到”/ftc_local_planner/global_plan”

global_point_pub:

obstacle_marker_pub

setPlan(const std::vector<geometry_msgs::PoseStamped> &plan)

参数:

plan 包含位姿信息的向量, 从起始点指向结束点

逻辑:

  1. 定义当前状态 PRE_ROTATE
  2. 复制plan到global_plan
  3. 如果规划中大于两个点(路径规划存在), 则将倒数第二个点的朝向改为倒数第三个点的朝向 global_plan[global_plan.size() - 2].pose.orientation = global_plan[global_plan.size() - 3].pose.orientation;
  4. 创建导航路径 nav_msgs::Path path;
  5. 将收到的路径plan原封不动放到path.poses中
  6. 发布path到”/ftc_local_planner/global_plan”

distanceLookahead() #未知

double FTCPlannerROS::distanceLookahead(){if (global_plan.size() < 2){return 0;}Eigen::Quaternion<double> current_rot(current_control_point.linear());Eigen::Affine3d last_straight_point = current_control_point;for (uint32_t i = current_index + 1; i < global_plan.size(); i++){tf2::fromMsg(global_plan[i].pose, last_straight_point);// check, if direction is the same. if so, we add the distanceEigen::Quaternion<double> rot2(last_straight_point.linear());if (abs(rot2.angularDistance(current_rot)) > config.speed_fast_threshold_angle * (M_PI / 180.0)){break;}}return (last_straight_point.translation() - current_control_point.translation()).norm();}

void FTCPlannerROS::update_control_point(double dt)

作用:

根据当前状态确定执行内容

状态: PRE_ROTATE, FOLLOWING, POST_ROTATE, WAITTING_FOR_GOAL_APPROACH, FINISHED

参数:

dt: 当前时间 - 上次执行的时间

逻辑: current_control_point: map坐标系下的点

local_control_point: base_link坐标系下的点

  1. 判断当前执行状态

    1. PRE_ROTATE
      1. 将global_plan[0].pose存入current_control_point
    2. FOLLOWING
      1. 计算前视距离 straight_dist=distanceLookahead()
      2. 如果前视距离大于满速行进的阈值, 则全速前进
      3. 若目标速度大于当前速度, 则根据配置的加速度对当前速度进行提升
      4. 如果: 需要移动的距离大于零, 同时需要转动的角度大于零且当前点不为全局路径规划的倒数第二个点, 进入循环
        1. 从全局规划中获取下两个点, currentPose以及nextPose
        2. 计算两个点的距离 pose_distance
        3. 如果两个点之间的距离小于等于0, 则警告: 跳过重复点(Skipping duplicate point in global plan)
        4. 通过current_progress(0-1之间的数), 计算剩余距离与角度
        5. 如果剩余的距离和角度可以在当前时间步内到达(remaining_distance_to_next_pose < distance_to_move*并且*remaining_angular_distance_to_next_pose < angle_to_move),则将机器人移动到下一个位置,更新**current_progress,减少distance_to_moveangle_to_move**
        6. 如果无法在当前时间步内到达下一个位置,则更新**current_progress**以确保机器人在下一个时间步内能够到达下一个位置
      5. 最后,通过插值计算机器人在当前时间步的控制点位置和方向,然后将其存储在**current_control_point**中,以供后续控制使用
    3. POST_ROTATE
      1. 将global_plan中的最后一个点保存到current_control_point中
    4. WAITTING_FOR_GOAL_APPROACH
      1. break
    5. FINISHED
      1. break
  2. 创建目标点, viz用于发布current_control_point的坐标

  3. 通过tf::doTransform(currnet_control_point, local_control_point, map_to_base)转化current_control_point的坐标到 local_control_point. 注: current_control_point为基于map的全局坐标, 而local_control_point通过下面 两行, 将map全局坐标系下的点, 转化为从base_link到map的局部变换的点

    auto map_to_base = tf_buffer->lookupTransform("base_link", "map", ros::Time(), ros::Duration(1.0));
    tf2::doTransform(current_control_point, local_control_point, map_to_base);
    
  4. 计算误差 lat_error(横向误差), lon_error(纵向误差), angle_error(角度误差)

update_planner_state()

逻辑:

  1. 根据当前状态更新下一个状态
    1. PRE_ROTATE
      1. 判断setPlan的时间是否超时, 是, ERROR: Timeout in PRE_ROTATE phase; is_crashed=true; return FINISHED;
      2. 判断angle_error是否小于max_goal_angle_error, 是, INFO: FTCLocalPlannerROS: PRE_ROTATE finished return FOLLOWING
      3. break
    2. FOLLOWING
      1. 计算distance = local_control_point.translation().norm()
      2. 判断distance是否大于最大追踪距离max_follow_distance 是, ERROR: FTCLocalPlannerROS: Robot is far away from global plan. distance is_crashed=true return FINISHED
      3. 判断current_index是否为倒数第二个点 是, INFO: FTCLocalPlannerROS: switching planner to position mode return WAITING_FOR_GOAL_APPROACH
      4. break
    3. WAITING_FOR_GOAL_APPEOACH
      1. 计算distance = local_control_point.translation().norm()
      2. 判断是否超时 是, WARN: FTCLocalPlannerROS: Could not reach goal position return POST_ROTATE
      3. 判断距离是否小于max_goal_distance_error 是, INFO: FTCLocalPlannerROS: Reached goal position. return POST_ROTATE
      4. break
    4. POST_ROTATE
      1. 判断是否超时 是, WARN: FTCLocalPlannerROS: Could not reach goal rotation return FINISHED
      2. 判断角度误差是否小于max_goal_angle_error 是, INFO: FTCLocalPlannerROS: POST_ROTATE finished. return FINISHED
      3. break
    5. FINISHED
      1. break
  2. return current_state

bool checkCollision(int max_points)

参数:

max_points 向前预判的点的个数, 根据实际global_plan中每一个点之间的距离设置max_points

例如: 机器人当前点为 global_plan[current_index], 而max_points则负责检测从global_plan[current_index]global_plan[current_index + max_points]这段路径中间是否有障碍物, 有则为true

逻辑:

  1. 判断是否开启了障碍检测
  2. 如果global_plan.size() < max_points 则将最大值设为路径中点的总数
  3. 判断是否开启了obstacle_footprint 使用实际足迹检测碰撞
    1. costmap->getOrientedFootprint(footprint);获取当前机器人足迹, 保存到footprint
    2. 遍历footprint, 将每一个点从world转换到map
    3. 获取每一个点的代价
    4. 判断当前代价是否大于既定的致命值costs >= costmap_2d::LETHAL_OBSTACLE
    5. 是, WARN: FTCLocalPlannerROS: Possible collision of footprint at actual pose. Stop local planner. return true
  4. for (int i = 0; i < max_points; i++) 判断前视距离是否有障碍物
    1. 获取current_index + i 点的坐标
    2. 将该坐标转换到map坐标系
    3. 获取该坐标的代价值
    4. 判断 costs >127 && costs > previous_cost 是, WARN(FTCLocalPlannerROS: Possible collision. Stop local planner.) return true
    5. 更新previous_cost为costs
    6. 开始下个循环
  5. return false

void calculate_velocity_commands(double dt, geometry_msgs::Twist &cmd_vel)

参数:

dt 现在时间与上次执行时间之差

cmd_vel 速度置零

逻辑:

  1. 判断current_state == FINISHED || is_crashed 速度置零, 返回
  2. 计算PID参数
  3. 判断current_state==FOLLOWING
    1. 通过PID计算线速度
    2. 如果线速度 < 0 且 forward_only 为true 速度归零
    3. 限制线速度在 -max_cmd_vel_speed 到 max_cmd_vel_speed之间
    4. cmd_vel.linear.x = lin_speed
  4. 角速度的运算分两部分, current_state == FOLLOWING以及current_state == PRE_ROTATE
    1. 判断current_state==FOLLOWING
      1. 通过PID计算角速度
      2. 限制角速度
      3. cmd_vel.angular.z = ang_speed
    2. 否则(也就是机器人处于PRE_ROTATE阶段)
      1. 通过PID计算角速度
      2. 限制角速度
      3. cmd_vel.angular.z = ang_speed
      4. 震荡检测, 如果震荡, 则角速度拉满

bool computeVelocityCommands(geometry_msgs::Twist &cmd_vel)

参数:

cmd_vel 速度

逻辑:

  1. 计算dt 执行该代码时的时间 - 上次执行改代码的时间
  2. 判断是否碰撞(is_crashed) 是, 速度置零, return false
  3. 判断是否完成(current_state==FINISHED), 是, 速度置零, return true
  4. 根据dt, 更新控制点 update_control_point(dt)
  5. 更新当前状态 auto new_planner_state = update_planner_state()
  6. 判断: 新状态与当前状态是否一致 是, INFO: FTCLocalPlannerROS: Switching to state 更新state_entered_time (用于判断一个状态是否会超时) 更新当前状态为新状态
  7. 判断是否存在碰撞 checkCollision(obstacle_lookahead) 是, 速度置零 is_crashed = true return false
  8. 计算速度 calculate_velocity_commands(dt, cmd_vel)

这篇关于FTC局部路径规划代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233863

相关文章

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见