论文-See, Hear and Read: Deep Aligned Representations

2023-10-18 14:59

本文主要是介绍论文-See, Hear and Read: Deep Aligned Representations,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

See, Hear and Read: Deep Aligned Representations

  

本paper提出了可以在三种自然模态(视觉,声音,语言)下进行学习的深度判断特征表达,使用Deep Conv Network来进行对齐式的表达学习。

 

本paper使用的dataset:

 

Cross-Modal Network

目标是对image X 和sound Y学习其对齐之后的representation。

 

Learning Aligned Representation的结构:

 

为了让不同模态之间的representation进行对齐,在网络较上层的layer进行共享参数。这样的好处是让类内部的representation进行跨模态的融合。

Student-teacher模型在transfer learning上使用。在本paper中,不使用aligned representation,而是让learned parameters进行共享。

 

 

 

Alignment by Model Transfer

给定一个 teacher 模态 g(x), 比如让AlexNet成为image classification model,在给定另一个模态的data时,对f(x) 进行训练。

使用KL-divergence作为loss:

 

Alignment by Ranking

对于ranking loss function,采用有着对齐和判别属性的表达式:

 

其中△是边缘大小的超参数。

 

Learning

其中 model transfer loss 来源于最后一层的output layer,ranking loss 来源于所有的共享layers。最后的objective loss 是两者的总和。

 

Network Architecture

网络有三层不同的输入层,取决于数据的不同模态。其中网络的disjoint pathway对不同的模态的data进行feature extraction,然后在shared layers中拟合成modal-robust features。

 

Sound Network

因为sound是一维的信号,本paper使用四层的卷积网络将spectrogram转换成high-level的representation,

Text Network

使用word2vec将sentences转换为word representation,使用一个四层的deep one-dimensional Convolutional Network 来提取特征

Vision Network

使用标准的Krizhevsky architecture,提取pool5的特征经过flatten作为特征

Shared Network

来自sound,text,和vision的feature都有着固定长度相同维度的vector,

 

 

对比结果:

总结:

将data经过不同的特征转化网络,在shared layer里面将相同label的特征统一扭曲到可分的空间中。

 

转载于:https://www.cnblogs.com/zhang-yd/p/7838024.html

这篇关于论文-See, Hear and Read: Deep Aligned Representations的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/233302

相关文章

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin