c++中计算2得n次方_「专题」解析一元一次方程的知识点以及实际应用

本文主要是介绍c++中计算2得n次方_「专题」解析一元一次方程的知识点以及实际应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解方程的内容大家基本从小学就开始学习,小学主要是求解,而中学阶段主要学习根据条件列方程并求解。因此,涉及一元一次方程的应用题,可以说是中学阶段学习方程问题的第一个难点。下面让我们先来解决初中可能遗留的第一个问题——一元一次方程。

什么是一元一次方程

我们将含有未知数的等式就叫做方程,那么什么是一元一次方程呢?只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

一元一次方程的标准形式:

ax+b=0(x是未知数,a、b是已知数,且a≠0)。

一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数最高次项为1;

(4)含未知数的项的系数不为0。

80e41137a6aa8f16e331665e1dc2da3c.png

如何解一元一次方程

01

解方程的一般步骤

(1)去分母:方程两边同乘各分母的最小公倍数

(2)去括号:按去括号法则和分配律

(3)移项:把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号

(4)合并:把方程化成ax = b (a≠0)形式

(5)系数化为1:在方程两边都除以未知数的系数a,得到方程的解

02

方程的解:

使方程中等号左右两边相等的未知数的值,叫做方程的解。

注意:方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。

实际上,解一元一次方程就是在运用等式的性质进行求解。

6b30cd934a00e335084c92f649566205.gif

● 等式的性质

(1)等式两边都加上(或减去)同个数(或式子),等式仍然成立。

用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式两边乘同一个数,或除以同一个不为0的数,等式仍然成立。

用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c

(3)等式两边同时乘方(或开方),等式仍然成立。

3bf0a25fd5ecd4721713b3f13ef003e4.png

03

方程的解的检验方法:

首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等,从而得出结论。

对初学的同学来讲,解一元一次方程的方法很容易掌握,但类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。

因此,在学习时,一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。

db3566c2fba49d3f067100839398d274.png

如何利用一元一次方程解应用题

一元一次方程的应用题主要是从实际问题中寻找相等关系,分析实际问题中的已知量和未知量,找出相等关系,列出方程,使同学们逐步建立列方程解决实际问题的思想方法。基本步骤

01

基本步骤:

412c826cf470c4bce31c6b0b5246caca.png
77444f518b70636dfc8ffb0611df8f3a.png

02

设未知数的方法:

(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况。

(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用。

(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去。

(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然。

注意:

初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。

设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里尤其需要注意这个问题。

dbbfec0d90cfeba1cdcbb12267fbe2ef.gif
217cba7fc7cbad1ab8d3bf10efbdbfab.png

应用题常见类型

学习中,部分同学很容易忽视对一元一次方程的联系,实际上该方程牵涉到许多的实际问题,而与实际问题的结合正是大部分同学的失分点。

工程问题:

当题目中未给出工作总量时,设工作总量为单位1,即完成某项任务的各工作量的和=总工作量=1。

工作总量=工作时间×工作效率

各部分工作量之和=1

行程问题

涉及行程问题,我们经常采用“画图分析法”,利用图形分析行程问题是数形结合思想在数学中的体现,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

路程=速度×时间

相遇路程=速度和×相遇时间

追及路程=速度差×追及时间

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度水流速度=×(顺流速度-逆流速度)

火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:

车速×过桥时间=车长+桥长。

baf76c73f57c2c47f5b2fdde681b8391.png

利润问题:

在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,我们必须了解这些概念的实际应用,比如:商品打几折出售,就是按原标价的百分之几十出售,商品打8折出售,即按原标价的80%出售。在了解这些基本概念的基础上,还必须掌握以下几个等量关系:

利润=售价-进价

利润=进价×利润率

实际售价=标价×打折率

调配问题:

调配与比例问题在日常生活中十分常见,比如:合理选取方案,安排工人生产,按比例选取工程材料,调剂人数或货物等。

调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。在调配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。

af09ada924bf314554588ffef29f5268.gif

对于一元一次方程,从操作步骤上来讲,大部分同学都能够明晰,但是进行每个步骤是需要注意的细节问题,是思维瑕点,需要反复关注易错点,并落实理解记忆,才能提高方程的正确率。此外,针对,一元一次方程的应用题,必须要明晰各类题型之间涉及的关系公式,否则就是“求助无门”!

看完后不要忘记结合“每日一题”进行练习哟!

这篇关于c++中计算2得n次方_「专题」解析一元一次方程的知识点以及实际应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/232526

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工