Node2Vec实战---《悲惨世界》人物图嵌入

2023-10-18 08:50

本文主要是介绍Node2Vec实战---《悲惨世界》人物图嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. pip各个包后导入

import networkx as nx # 图数据挖掘
import numpy as np # 数据分析
import random # 随机数# 数据可视化
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

2. 导入内置的数据集

# 《悲惨世界》人物数据集
G = nx.les_miserables_graph()

3. 可视化图,with_labels=True,以此给每个节点的名称显示出来

# 可视化
plt.figure(figsize=(15,14))
pos = nx.spring_layout(G, seed=5)
nx.draw(G, pos, with_labels=True) # 给每个节点的名称显示出来
plt.show()

4. 接下来导入Node2Vec模型,并设置其模型参数,并将最终得到的各个节点的嵌入向量embedding赋予给变量X

from node2vec import Node2Vec# 设置node2vec参数
node2vec = Node2Vec(G, dimensions=32,  # 嵌入维度p=1,            # 回家参数q=3,          # 外出参数walk_length=10, # 随机游走最大长度num_walks=600,  # 每个节点作为起始节点生成的随机游走个数workers=4       # 并行线程数)# p=1, q=0.5, n_clusters=6。DFS深度优先搜索,挖掘同质社群
# p=1, q=2, n_clusters=3。BFS宽度优先搜索,挖掘节点的结构功能。# 训练Node2Vec,参数文档见 gensim.models.Word2Vec
model = node2vec.fit(window=3,    # Skip-Gram窗口大小min_count=1,  # 忽略出现次数低于此阈值的节点(词)batch_words=4 # 每个线程处理的数据量)X = model.wv.vectors # 77个节点的嵌入向量

5. 接下来用Kmeans聚类算法,进行节点Embedding聚类可视化

#DBSCAN聚类
# from sklearn.cluster import DBSCAN
# cluster_labels = DBSCAN(eps=0.5,min samples=6).fit(X).labels
# print(cluster labels)# KMeans聚类
from sklearn.cluster import KMeans
cluster_labels = KMeans(n_clusters=3).fit(X).labels_ # 对X进行聚类,聚成三簇,
print(cluster_labels) # 得到聚类的label

print(cluster_labels)的结果:

将词汇表的节点顺序转为networkx中的节点顺序。

colors = []
nodes = list(G.nodes)
for node in nodes: # 按 networkx 的顺序遍历每个节点idx = model.wv.key_to_index[str(node)] # 获取这个节点在 embedding 中的索引号colors.append(cluster_labels[idx]) # 获取这个节点的聚类结果

把colors放到原图中可视化,可视化聚类效果如下:

plt.figure(figsize=(15,14))
pos = nx.spring_layout(G, seed=10)
nx.draw(G, pos, node_color=colors, with_labels=True)
plt.show()

上图的效果其实很像原论文里所谓DFS的效果,也就是挖掘同质社群,我觉得更通俗一点,就是相邻的节点其实就是一类。

 6. 将Embedding用PCA降维到2维,进行节点embedding降维可视化

# 将Embedding用PCA降维到2维
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
embed_2d = pca.fit_transform(X)# # 将Embedding用TSNE降维到2维
# from sklearn.manifold import TSNE
# tsne = TSNE(n_components=2, n_iter=5000)
# embed_2d = tsne.fit_transform(X)# plt.figure(figsize=(14,14))
plt.scatter(embed_2d[:, 0], embed_2d[:, 1]) # 绘制散点图
plt.show()

7. 找到和拿破仑相似的节点

8. 对edge连接进行embedding

from node2vec.edges import HadamardEmbedder # 导入工具包# Hadamard 二元操作符:两个 Embedding 对应元素相乘
edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

后言:虽说调包也不用考虑什么原理问题(),但是针对O(1)的采样方法alias sampling我还是想说下我自己对此的理解,大佬解说的视频:
因为好像有可能事件的概率不一定是相等的,就是不均匀的,一开始我还想用哈希表,用key:概率区间的某个值,value:事件编号,发现好像即使是0~1里面都有无数个实数,那就不可能hash了()
也就是如果“把四个柱子加在一起,然后直接让它们原本的大小等于自己的区间长度”,不太可能存在 概率映射到事件 的情况。
但是经过alias sampling以后,直接都是均匀的,其实就可以直接定位到某个区间了,剩下就取alias事件或者是原来的事件就行了,因为那个区间只可能是这两种情况 。

这篇关于Node2Vec实战---《悲惨世界》人物图嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231525

相关文章

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言