【more effective c++读书笔记】【第5章】技术(4)——Smart Pointers(智能指针)

2023-10-18 05:32

本文主要是介绍【more effective c++读书笔记】【第5章】技术(4)——Smart Pointers(智能指针),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、类似C++标准程序库提供的auto_ptr template的智能指针

//Smart.h
#ifndef SMART_H
#define SMART_Htemplate<typename T>
class SmartPtr{
public:SmartPtr(T* realPtr = 0); //构造函数~SmartPtr();//析构函数SmartPtr(SmartPtr& rhs); //拷贝构造函数SmartPtr& operator=(SmartPtr& rhs);//拷贝赋值运算符T* get() const; //获取原始指针T* operator->() const;//重载->运算符T& operator*() const;//重载*运算符bool operator!() const;//重载!运算符template<typename newType>operator SmartPtr<newType>();//隐式转换
private:T* pointer;
};
//构造函数
template<typename T>
SmartPtr<T>::SmartPtr(T* realPtr = 0) :pointer(realPtr){}
//析构函数
template<typename T>
SmartPtr<T>::~SmartPtr(){delete pointer;
}
//拷贝构造函数
template<typename T>
SmartPtr<T>::SmartPtr(SmartPtr<T>& rhs){pointer = rhs.pointer;//将*pointer的拥有权转移至*this,rhs不再拥有任何东西rhs.pointer = 0;
}
//拷贝赋值运算符
template<typename T>
SmartPtr<T>& SmartPtr<T>::operator=(SmartPtr<T>& rhs){if (this == &rhs)自赋值情况return *this;delete pointer;//删除目前拥有物pointer = rhs.pointer;//将*pointer的拥有权转移至*this,rhs不再拥有任何东西rhs.pointer = 0;return *this;
}
//获取原始指针
template<typename T>
T* SmartPtr<T>::get() const{return pointer;
}
//重载->运算符
template<typename T>
T* SmartPtr<T>::operator->() const{return pointer;
}
//重载*运算符
template<typename T>
T& SmartPtr<T>::operator*() const{return *pointer;
}
//重载!运算符
template<typename T>
bool SmartPtr<T>::operator!() const{if (pointer == nullptr)return true;return false;
}
//隐式转换
template<typename T>
template<typename newType>
SmartPtr<T>::operator SmartPtr<newType>(){return SmartPtr<newType>(pointer);
}#endif
//Tmb.h
#ifndef TMB_H
#define TMB_H#include<iostream>
class Top{
public:Top(int i = 0){ iTop = i; }void printT(){ std::cout << iTop << std::endl; }
private:int iTop;
};
class Middle :public Top{
public:Middle(int i = 0) :Top(i){}void printM(){ printT(); }
};
class Bottom :public Middle{
public:Bottom(int i = 0) :Middle(i){}void printB(){ printM(); }
private:int iTop;
};#endif
//main.cpp
#include"Smart.h"
#include"Tmb.h"
#include<iostream>
using namespace std;int main(){Top* p1 = new Top(1);SmartPtr<Top> sp1(p1);SmartPtr<Top> sp2(sp1);//sp1不指向任何对象sp2->printT();SmartPtr<Top> sp3;sp3 = sp2; //拷贝赋值,sp2不指向任何对象(*sp3).printT();//sp2->printT();//出错system("pause");return 0;
}
二、运用引用计数的智能指针

//Smart.h
#ifndef SMART_H
#define SMART_Htemplate<typename T>
class SmartPtr;//需要前置声明 ,编译器将友元声明当作类的声明   
//辅助类
template<typename T>
class RefPtr{ 
private://成员访问权限全为private,不想让用户直接使用该类  friend class SmartPtr<T>;//定义智能指针类为友元,可以让智能指针类直接操纵辅助类 int refCount;T* pointer;RefPtr(T* ptr) :pointer(ptr), refCount(1){}~RefPtr(){ delete pointer; }
};
//智能指针类
template<typename T>
class SmartPtr{
public:SmartPtr(T* realPtr); //构造函数~SmartPtr();//析构函数SmartPtr(const SmartPtr& rhs); //拷贝构造函数SmartPtr& operator=(const SmartPtr&);//拷贝赋值运算符T* get() const; //获取原始指针T* operator->() const;//重载->运算符T& operator*() const;//重载*运算符bool operator!() const;//重载!运算符template<typename newType>operator SmartPtr<newType>();//隐式转换int getRefCount();//获取引用计数
private:RefPtr<T>* rp;//辅助类对象指针  
};
//构造函数
template<typename T>
SmartPtr<T>::SmartPtr(T* realPtr) :rp(new RefPtr<T>(realPtr)){}
//析构函数
template<typename T>
SmartPtr<T>::~SmartPtr(){if (--rp->refCount==0)//操作数引用次数减1,如果为0,说明没有对象被引用,删除delete rp;
}
//拷贝构造函数
template<typename T>
SmartPtr<T>::SmartPtr(const SmartPtr<T>& rhs):rp(rhs.rp){++rp->refCount;//左操作数引用次数加1
}
//拷贝赋值运算符
template<typename T>
SmartPtr<T>& SmartPtr<T>::operator=(const SmartPtr<T>& rhs){if (this == &rhs) //自赋值情况return *this;++rhs.rp->refCount;//右操作数引用次数加1if (--rp->refCount == 0)//左操作数引用次数减1,如果为0,说明没有对象被引用,删除delete rp;rp = rhs.rp;return *this;
}
//获取原始指针
template<typename T>
T* SmartPtr<T>::get() const{return rp->pointer;
}
//重载->运算符
template<typename T>
T* SmartPtr<T>::operator->() const{return rp->pointer;
}
//重载*运算符
template<typename T>
T& SmartPtr<T>::operator*() const{return *(rp->pointer);
}
//重载!运算符
template<typename T>
bool SmartPtr<T>::operator!() const{if (rp->pointer == nullptr)return true;return false;
}
//隐式转换
template<typename T>
template<typename newType>
SmartPtr<T>::operator SmartPtr<newType>(){return SmartPtr<newType>(rp->pointer);
}
template<typename T>
int SmartPtr<T>::getRefCount(){return rp->refCount;
}
#endif
//Tmb.h
#ifndef TMB_H
#define TMB_H#include<iostream>
class Top{
public:Top(int i = 0){ iTop = i; }void printT(){ std::cout << iTop << std::endl; }
private:int iTop;
};
class Middle :public Top{
public:Middle(int i = 0) :Top(i){}void printM(){ printT(); }
};
class Bottom :public Middle{
public:Bottom(int i = 0) :Middle(i){}void printB(){ printM(); }
private:int iTop;
};#endif
//main.cpp
#include"Smart.h"
#include"Tmb.h"
#include<iostream>
using namespace std;int main(){Top* p1 = new Top(1);SmartPtr<Top> sp1(p1);cout << "此时sp1的引用计数为:" << sp1.getRefCount() << endl;// 1SmartPtr<Top> sp2(sp1);//sp1,sp2的rp指向同一个对象  cout << "此时sp1的引用计数为:" << sp1.getRefCount() << endl;// 2  cout << "此时sp2的引用计数为:" << sp2.getRefCount() << endl;// 2cout << "---------------------------------------" << endl;Top* p2 = new Top(2);SmartPtr<Top> sp3(p2);cout << "此时sp1的引用计数为:" << sp1.getRefCount() << endl;//2  cout << "此时sp2的引用计数为:" << sp2.getRefCount() << endl;//2  cout << "此时sp3的引用计数为:" << sp3.getRefCount() << endl;//1  cout << "---------------------------------------" << endl;sp3 = sp1;//首先sp1的引用计数加1,因为多了一个sp3指向它的对象,所以sp1的引用计数此时为3//而sp3引用计数此时减1,变成了0,此时 p2这个内存没有人占用,所以此时释放,这个时候调用析构函数删除p2   cout << "此时sp1的引用计数为:" << sp1.getRefCount() << endl;// 3cout << "此时sp2的引用计数为:" << sp2.getRefCount() << endl;// 3cout << "此时sp3的引用计数为:" << sp3.getRefCount() << endl;// 3sp1->printT(); (*sp1).printT();system("pause");return 0;
}


这篇关于【more effective c++读书笔记】【第5章】技术(4)——Smart Pointers(智能指针)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230505

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3