《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率

本文主要是介绍《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率

《机器学习》西瓜书P69

3.3 选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率

数据集:鸢尾花数据集

数据集属性信息:

1.萼片长度(以厘米计)
2.萼片宽度(以厘米计)
3.花瓣长度(以厘米计)
4.花瓣宽度(以厘米计)
5.类别:

数据集处理说明:该数据集中鸢尾花种类共有3种,分别是:Iris-setosa、Iris-versicolor和Iris-virginica,由于题目中要求采用两种方法对数据集进行处理,因此我们将Iris-setosa和Iris-versicolor划分在一个数据集(称为1号数据集),并采用留一法法进行数据集的划分,Iris-versicolor和Iris-virginica放入另一个数据集(称为2号数据集)并使用交叉验证法进行划分。

【代码】

#Iris-setosa标记为0,Iris-versicolor标记为1,Iris-virginica标记为2
def loadDataset(filename):dataset_12=[]dataset_23=[]with open(filename,'r',encoding='utf-8') as csvfile:csv_reader = csv.reader(csvfile)for row in csv_reader:if row[4] == 'Iris-setosa':row[4]=0dataset_12.append(copy.deepcopy(row))elif row[4]=='Iris-virginica':row[4]=2dataset_23.append(copy.deepcopy(row) )else:row[4]=1dataset_12.append(copy.deepcopy(row))dataset_23.append(copy.deepcopy(row))data_12 = [[float(x) for x in row] for row in dataset_12]data_23= [[float(x) for x in row] for row in dataset_23]# print(data_12)# print(data_23)return data_12,data_23

注意:在该程序中我们使用append(copy.deepcopy(row))进行深度复制,目的是避免对数组的操作影响原数组的变化,下同!!!!


针对2号数据集:

【代码思路】我们使用10折交叉验证法对数据集每次划分为训练集和测试集,然后使用梯度下降法对训练集进行训练,并使用测试集求得每次的准确率,最终我们将10次准确率取平均值,即为最终的正确率。

【详细过程】

  1. 首先利用python中自带的函数进行10折交叉验证划分,由于返回的是划分数据的下标,因此我们需要找到对应的数据元素,然后,对得到的训练集和测试集中的数据进行预处理(在数组最后增加一列1,0,1存储真实标记),接着就可以参与训练,我们将迭代次数设置为2000次,我们发现当迭代次数达到2000之后,准确率很难再增长,于是取2000作为终止条件,将得到的w分别与10个测试集进行运算比较,得到10组准确率,取平均值即可。

  2. 最终我们得到10折交叉验证法进行对率回归得到的准确率为96%!

    #定义sigmoid函数
    def sigmoid(z):return 1.0 / (1 + np.exp(-z))#计算正确率
    def testing(testset,w,testlabel):data = np.mat(testset).astype(float)y = sigmoid(np.dot(data, w))b, c = np.shape(y)  # 功能是查看矩阵或者数组的维数。rightcount = 0for i in range(b):flag = -1if y[i, 0] > 0.5:flag = 1elif y[i, 0] < 0.5:flag = 0if testlabel[i] == flag:rightcount += 1rightrate = rightcount / len(testset)return rightrate#迭代求w
    def training(dataset,labelset,testset,testlabel):# np.dot(a,b) a和b矩阵点乘# np.transpose()  转置# np.ones((m,n))  创建一个m行n列的多维数组data=np.mat(dataset).astype(float)label=np.mat(labelset).transpose()w = np.ones((len(dataset[0]),1))#步长n=0.0001# 每次迭代计算一次正确率(在测试集上的正确率)# 达到0.90的正确率,停止迭代rightrate=0.0count=0while count<5000:c=sigmoid(np.dot(data,w))b=c-labelchange = np.dot(np.transpose(data),b)w=w-change*n#预测,更新准确率if rightrate<testing(testset,w,testlabel):rightrate=testing(testset,w,testlabel)count+=1return rightratedef formdata(dataset,flag):#flag=1代表的是对一号数据集进行数据预处理,falg=2针对2号数据集#主要是将训练集和测试集进行规范化处理,便于下一步进行正确率计算和迭代求wdata=[]label=[]if flag==1:for row in dataset:label.append(copy.deepcopy(row[4]))row[4]=1data.append(copy.deepcopy(row))elif flag == 2:for row in dataset:label.append(copy.deepcopy(row[4]-1))row[4]=1data.append(copy.deepcopy(row))return data,labeldef changedata(dataset,train_index,test_index):#对数据集进行处理,增加最后一列为1trainset=[]testset=[]for i in train_index:trainset.append(copy.deepcopy(dataset[i]))for i in test_index:testset.append(copy.deepcopy(dataset[i]))return trainset,testset#10折交叉验证法对数据集23进行分类
    def Flod_10(dataset):sam=KFold(n_splits=10)rightrate=0.0for train_index,test_index in sam.split(dataset):#得到训练集和测试集的索引# 下面将索引转化为所对应的元素,并将训练集进行迭代,每次求出最大的正确率trainset,testset=changedata(dataset,train_index,test_index)#print(trainset)trainset,trainlabel=formdata(trainset,2)testset,testlabel=formdata(testset,2)rightrate+=training(trainset,trainlabel,testset,testlabel)print(rightrate/10)

    最终结果

[[-1.90048431][-1.20567294][ 2.31544454][ 2.66095658][-0.20997301]]
[[-1.86985439][-1.3288315 ][ 2.3427924 ][ 2.64797632][-0.16119412]]
[[-1.90055107][-1.29322442][ 2.37973509][ 2.68461371][-0.26297932]]
[[-2.00438577][-1.18000688][ 2.43352222][ 2.65712983][-0.15617894]]
[[-1.94737348][-1.16692044][ 2.35919664][ 2.59038908][-0.14542583]]
[[-1.91467144][-1.22980709][ 2.27891615][ 2.74578832][-0.23887025]]
[[-1.94810073][-1.27450893][ 2.37093425][ 2.64955955][-0.24649082]]
[[-1.99150258][-1.25235181][ 2.35312496][ 2.75221192][-0.20701229]]
[[-1.96302072][-1.29024687][ 2.31087635][ 2.8008307 ][-0.16047752]]
[[-1.9630222 ][-1.35486554][ 2.50563773][ 2.44772595][-0.25646535]]
0.96

针对1号数据集

【代码思路】我们使用留一法进行划分,将数据集的75%作为训练集,25%作为测试集,由于Iris-setosa、Iris-versicolor的个数为1:1因此采用分层抽样的方法,我们将每种花的75%作为训练集,25%作为测试集,然后进行迭代求准确率即可!

#留出法——对数据集12进行分类
#将75%的样本作为训练,其余用作测试
def LeftOut(dataset):train12=[]test12=[]for i in range(len(dataset)):if i<=37:train12.append(copy.deepcopy(dataset[i]))elif i>50 and i<=88:train12.append(copy.deepcopy(dataset[i]))else:test12.append(copy.deepcopy(dataset[i]))trainset,trainlabel=formdata(train12,1)testset,testlabel=formdata(test12,1)rightrate=training(trainset,trainlabel,testset,testlabel)print(rightrate)

最终结果

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YWyjAXfj-1620097001273)(C:\Users\hp\AppData\Roaming\Typora\typora-user-images\image-20210504105611147.png)]
【完整源代码】

import copy
import csv
import numpy as np
from sklearn.model_selection import KFold#Iris-setosa标记为0,Iris-versicolor标记为1,Iris-virginica标记为2
def loadDataset(filename):dataset_12=[]dataset_23=[]with open(filename,'r',encoding='utf-8') as csvfile:csv_reader = csv.reader(csvfile)for row in csv_reader:if row[4] == 'Iris-setosa':row[4]=0dataset_12.append(copy.deepcopy(row))elif row[4]=='Iris-virginica':row[4]=2dataset_23.append(copy.deepcopy(row) )else:row[4]=1dataset_12.append(copy.deepcopy(row))dataset_23.append(copy.deepcopy(row))data_12 = [[float(x) for x in row] for row in dataset_12]data_23= [[float(x) for x in row] for row in dataset_23]# print(data_12)# print(data_23)return data_12,data_23#定义sigmoid函数
def sigmoid(z):return 1.0 / (1 + np.exp(-z))#计算正确率
def testing(testset,w,testlabel):data = np.mat(testset).astype(float)y = sigmoid(np.dot(data, w))b, c = np.shape(y)  # 功能是查看矩阵或者数组的维数。rightcount = 0for i in range(b):flag = -1if y[i, 0] > 0.5:flag = 1elif y[i, 0] < 0.5:flag = 0if testlabel[i] == flag:rightcount += 1rightrate = rightcount / len(testset)return rightrate#迭代求w
def training(dataset,labelset,testset,testlabel):# np.dot(a,b) a和b矩阵点乘# np.transpose()  转置# np.ones((m,n))  创建一个m行n列的多维数组data=np.mat(dataset).astype(float)label=np.mat(labelset).transpose()w = np.ones((len(dataset[0]),1))#步长n=0.0001# 每次迭代计算一次正确率(在测试集上的正确率)# 达到0.90的正确率,停止迭代rightrate=0.0count=0while count<5000:c=sigmoid(np.dot(data,w))b=c-labelchange = np.dot(np.transpose(data),b)w=w-change*n#预测,更新准确率if rightrate<testing(testset,w,testlabel):rightrate=testing(testset,w,testlabel)count+=1print(w)return rightratedef formdata(dataset,flag):#flag=1代表的是对一号数据集进行数据预处理,falg=2针对2号数据集#主要是将训练集和测试集进行规范化处理,便于下一步进行正确率计算和迭代求wdata=[]label=[]if flag==1:for row in dataset:label.append(copy.deepcopy(row[4]))row[4]=1data.append(copy.deepcopy(row))elif flag == 2:for row in dataset:label.append(copy.deepcopy(row[4]-1))row[4]=1data.append(copy.deepcopy(row))return data,labeldef changedata(dataset,train_index,test_index):#对数据集进行处理,增加最后一列为1trainset=[]testset=[]for i in train_index:trainset.append(copy.deepcopy(dataset[i]))for i in test_index:testset.append(copy.deepcopy(dataset[i]))return trainset,testset#留出法——对数据集12进行分类
#将75%的样本作为训练,其余用作测试
def LeftOut(dataset):train12=[]test12=[]for i in range(len(dataset)):if i<=37:train12.append(copy.deepcopy(dataset[i]))elif i>50 and i<=88:train12.append(copy.deepcopy(dataset[i]))else:test12.append(copy.deepcopy(dataset[i]))trainset,trainlabel=formdata(train12,1)testset,testlabel=formdata(test12,1)rightrate=training(trainset,trainlabel,testset,testlabel)print(rightrate)#10折交叉验证法对数据集23进行分类
def Flod_10(dataset):sam=KFold(n_splits=10)rightrate=0.0for train_index,test_index in sam.split(dataset):#得到训练集和测试集的索引# 下面将索引转化为所对应的元素,并将训练集进行迭代,每次求出最大的正确率trainset,testset=changedata(dataset,train_index,test_index)#print(trainset)trainset,trainlabel=formdata(trainset,2)testset,testlabel=formdata(testset,2)rightrate+=training(trainset,trainlabel,testset,testlabel)print(rightrate/10)filename="iris.csv"
data_12,data_23=loadDataset(filename)
LeftOut(data_12)
Flod_10(data_23)

【结论】

10折交叉验证法的错误率:0%(存在偶然性,需要进行多次随机抽样取平均值,我们未进行该操作

留一法所估计出的对率回归的错误率:4%

这篇关于《机器学习》西瓜书课后习题3.4——python解交叉验证和留一法的对率回归错误率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226024

相关文章

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进