Tensorflow反卷积(conv2d_transpose)实现原理+手写python代码实现反卷积(DeConv)

本文主要是介绍Tensorflow反卷积(conv2d_transpose)实现原理+手写python代码实现反卷积(DeConv),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 反卷积原理

反卷积原理不太好用文字描述,这里直接以一个简单例子描述反卷积过程。

假设输入如下:

[[1,0,1],[0,2,1],[1,1,0]]

反卷积卷积核如下:

[[ 1, 0, 1],[-1, 1, 0],[ 0,-1, 0]]

现在通过stride=2来进行反卷积,使得尺寸由原来的3*3变为6*6.那么在Tensorflow框架中,反卷积的过程如下(不同框架在裁剪这步可能不一样):

反卷积实现例子

其实通过我绘制的这张图,就已经把原理讲的很清楚了。大致步奏就是,先填充0,然后进行卷积,卷积过程跟上一篇文章讲述的一致。最后一步还要进行裁剪。好了,原理讲完了,(#.#)....

2 代码实现

上一篇文章我们只针对了输出通道数为1进行代码实现,在这篇文章中,反卷积我们将输出通道设置为多个,这样更符合实际场景。

先定义输入和卷积核:

input_data=[[[1,0,1],[0,2,1],[1,1,0]],[[2,0,2],[0,1,0],[1,0,0]],[[1,1,1],[2,2,0],[1,1,1]],[[1,1,2],[1,0,1],[0,2,2]]]
weights_data=[ [[[ 1, 0, 1],[-1, 1, 0],[ 0,-1, 0]],[[-1, 0, 1],[ 0, 0, 1],[ 1, 1, 1]],[[ 0, 1, 1],[ 2, 0, 1],[ 1, 2, 1]], [[ 1, 1, 1],[ 0, 2, 1],[ 1, 0, 1]]],[[[ 1, 0, 2],[-2, 1, 1],[ 1,-1, 0]],[[-1, 0, 1],[-1, 2, 1],[ 1, 1, 1]],[[ 0, 0, 0],[ 2, 2, 1],[ 1,-1, 1]], [[ 2, 1, 1],[ 0,-1, 1],[ 1, 1, 1]]]  ]

上面定义的输入和卷积核,在接下的运算过程如下图所示:

执行过程

可以看到实际上,反卷积和卷积基本一致,差别在于,反卷积需要填充过程,并在最后一步需要裁剪。具体实现代码如下:

#根据输入map([h,w])和卷积核([k,k]),计算卷积后的feature map
import numpy as np
def compute_conv(fm,kernel):[h,w]=fm.shape [k,_]=kernel.shape r=int(k/2)#定义边界填充0后的mappadding_fm=np.zeros([h+2,w+2],np.float32)#保存计算结果rs=np.zeros([h,w],np.float32) #将输入在指定该区域赋值,即除了4个边界后,剩下的区域padding_fm[1:h+1,1:w+1]=fm #对每个点为中心的区域遍历for i in range(1,h+1):for j in range(1,w+1): #取出当前点为中心的k*k区域roi=padding_fm[i-r:i+r+1,j-r:j+r+1]#计算当前点的卷积,对k*k个点点乘后求和rs[i-1][j-1]=np.sum(roi*kernel)return rs#填充0
def fill_zeros(input):[c,h,w]=input.shapers=np.zeros([c,h*2+1,w*2+1],np.float32)for i in range(c):for j in range(h):for k in range(w): rs[i,2*j+1,2*k+1]=input[i,j,k] return rsdef my_deconv(input,weights):#weights shape=[out_c,in_c,h,w][out_c,in_c,h,w]=weights.shape   out_h=h*2out_w=w*2rs=[]for i in range(out_c):w=weights[i]tmp=np.zeros([out_h,out_w],np.float32)for j in range(in_c):conv=compute_conv(input[j],w[j])#注意裁剪,最后一行和最后一列去掉tmp=tmp+conv[0:out_h,0:out_w]rs.append(tmp)return rs def main():  input=np.asarray(input_data,np.float32)input= fill_zeros(input)weights=np.asarray(weights_data,np.float32)deconv=my_deconv(input,weights)print(np.asarray(deconv))if __name__=='__main__':main()

计算卷积代码,跟上一篇文章一致。代码直接看注释,不再解释。运行结果如下:

[[[  4.   3.   6.   2.   7.   3.][  4.   3.   3.   2.   7.   5.][  8.   6.   8.   5.  11.   2.][  3.   2.   7.   2.   3.   3.][  5.   5.  11.   3.   9.   3.][  2.   1.   4.   5.   4.   4.]][[  4.   1.   7.   0.   7.   2.][  5.   6.   0.   1.   8.   5.][  8.   0.   8.  -2.  14.   2.][  3.   3.   9.   8.   1.   0.][  3.   0.  13.   0.  11.   2.][  3.   5.   3.   1.   3.   0.]]]

为了验证实现的代码的正确性,我们使用tensorflow的conv2d_transpose函数执行相同的输入和卷积核,看看结果是否一致。验证代码如下:

import tensorflow as tf
import numpy as np 
def tf_conv2d_transpose(input,weights):#input_shape=[n,height,width,channel]input_shape = input.get_shape().as_list()#weights shape=[height,width,out_c,in_c]weights_shape=weights.get_shape().as_list() output_shape=[input_shape[0], input_shape[1]*2 , input_shape[2]*2 , weights_shape[2]]print("output_shape:",output_shape)deconv=tf.nn.conv2d_transpose(input,weights,output_shape=output_shape,strides=[1, 2, 2, 1], padding='SAME')return deconvdef main(): weights_np=np.asarray(weights_data,np.float32)#将输入的每个卷积核旋转180°weights_np=np.rot90(weights_np,2,(2,3))const_input = tf.constant(input_data , tf.float32)const_weights = tf.constant(weights_np , tf.float32 )input = tf.Variable(const_input,name="input")#[c,h,w]------>[h,w,c]input=tf.transpose(input,perm=(1,2,0))#[h,w,c]------>[n,h,w,c]input=tf.expand_dims(input,0)#weights shape=[out_c,in_c,h,w]weights = tf.Variable(const_weights,name="weights")#[out_c,in_c,h,w]------>[h,w,out_c,in_c]weights=tf.transpose(weights,perm=(2,3,0,1))#执行tensorflow的反卷积deconv=tf_conv2d_transpose(input,weights) init=tf.global_variables_initializer()sess=tf.Session()sess.run(init)deconv_val  = sess.run(deconv) hwc=deconv_val[0]print(hwc) if __name__=='__main__':main() 

上面代码中,有几点需要注意:

  1. 每个卷积核需要旋转180°后,再传入tf.nn.conv2d_transpose函数中,因为tf.nn.conv2d_transpose内部会旋转180°,所以提前旋转,再经过内部旋转后,能保证卷积核跟我们所使用的卷积核的数据排列一致。
  2. 我们定义的输入的shape为[c,h,w]需要转为tensorflow所使用的[n,h,w,c]。
  3. 我们定义的卷积核shape为[out_c,in_c,h,w],需要转为tensorflow反卷积中所使用的[h,w,out_c,in_c]

执行上面代码后,执行结果如下:

[[  4.   3.   6.   2.   7.   3.][  4.   3.   3.   2.   7.   5.][  8.   6.   8.   5.  11.   2.][  3.   2.   7.   2.   3.   3.][  5.   5.  11.   3.   9.   3.][  2.   1.   4.   5.   4.   4.]]
[[  4.   1.   7.   0.   7.   2.][  5.   6.   0.   1.   8.   5.][  8.   0.   8.  -2.  14.   2.][  3.   3.   9.   8.   1.   0.][  3.   0.  13.   0.  11.   2.][  3.   5.   3.   1.   3.   0.]]

对比结果可以看到,数据是一致的,证明前面手写的python实现的反卷积代码是正确的。



作者:huachao1001
链接:https://www.jianshu.com/p/f0674e48894c
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

这篇关于Tensorflow反卷积(conv2d_transpose)实现原理+手写python代码实现反卷积(DeConv)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224832

相关文章

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Linux实现查看某一端口是否开放

《Linux实现查看某一端口是否开放》文章介绍了三种检查端口6379是否开放的方法:通过lsof查看进程占用,用netstat区分TCP/UDP监听状态,以及用telnet测试远程连接可达性... 目录1、使用lsof 命令来查看端口是否开放2、使用netstat 命令来查看端口是否开放3、使用telnet

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php