python:Opencv4答题卡检测实例练习

2023-10-17 08:30

本文主要是介绍python:Opencv4答题卡检测实例练习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python:Opencv4答题卡检测1实例练习

利用python+opencv对答题卡进行检测,圈出正确的答案,并打印出得分。
原始图像:
在这里插入图片描述
最终结果:
在这里插入图片描述

实现过程

读入图像并转化为灰度图

# 读入图像
img_org = cv2.imread(img_path)
cv_show('img_org', img_org)
img = cv2.cvtColor(img_org, cv2.COLOR_BGR2GRAY)

1.图像预处理

主要对图像进行去噪和透视变换

首先对图像降噪

'''图像预处理'''
# 高斯滤波除去噪点
img = cv2.GaussianBlur(img, (3,3), 0, 0)
cv_show('img', img)

其次是透视变换矫正答题卡部分的图像:做此变化是为了后续的坐标统计

然后为透视变换做些准备
首先是边缘和轮廓检测

# 边缘检测
img = cv2.Canny(img, 20, 200)
cv_show('img_canny', img)# 轮廓检测
contours, __  = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# img_copy = img.copy()
# img_copy = cv2.drawContours(img_copy, contours, -1, (0,255,0), 2)
# cv_show('img_con', img_copy)
'''我的opencv版本是4.1.0轮廓检测的返回值是二元组,opencv3则返回三元组'''

我们需要对找到的轮廓进行筛选,找到答题纸部分的轮廓
一般最大的面积的轮廓就是需要的答题纸部分
对答题纸部分的轮廓进行近似,将不太规整的轮廓转化为四边形

# 遍历所有轮廓找出面积最大的轮廓
if len(contours) > 0:# 根据cv2.contourArea函数进行降序排序cnt = sorted(contours, key= cv2.contourArea, reverse= True)# 遍历轮廓for i in cnt:# 计算周长long = cv2.arcLength(i, closed= True)# 近似轮廓为折线approx = cv2.approxPolyDP(i, 0.02 * long, closed= True)# 检测返回的折线坐标if len(approx) == 4:docCnt = approxprint(docCnt.shape) # >>>(4, 1, 2)break

在进行透视变换前,还需要计算些参数
这里稍微介绍下opencv4中做透视变换的两个函数
1.cv2.getPerspectiveTransform(src,M)
src表示原图像的四边顶点的坐标,M表示为要求变换的四边顶点的坐标,最后得到一个3x3的变换矩阵
2.cv2.warpPerspective(src,M,dsize(height,width)
src为输入图像,M为cv2.getperpectiveTransform()函数的到的变换矩阵),dsize为输出图像的大小
学习笔记4(opencv and python 透视变换(鸟瞰))

按照这两个函数需要的参数,我们需要通过原图的四个顶点坐标、待变换图像四个顶点坐标放入cv2.getPerspectiveTransform(src,M)中得到3x3的变换矩阵。
然后我们需要得到输出图像的尺寸也就是变换后图像的长和宽,再加上上一个函数得到的变换矩阵就可以用cv2.warpPerspective(src,M,dsize(height,width)来得到透视变换后的图像。

'''按照上面的思路,写两个函数来实现透视变换'''
# 获取要变换图像的四点坐标
def get_point(pot):ret = np.zeros((4,2), dtype= 'float32')# 按列相加就是(x+y)横坐标与列坐标相加a = np.sum(pot, axis= 1)# 小的是左上坐标ret[0] = pot[np.argmin(a)]# 大的是右下坐标ret[2] = pot[np.argmax(a )]# 按列相减就是|x-y|横坐标和纵坐标相减a = np.diff(pot, axis= 1)# 小的是右上坐标ret[1] = pot[np.argmin(a)]# 大的是左下坐标ret[3] = pot[np.argmax(a)]return ret# 透视变换
def Perspective_transformation(img, pot):pot = get_point(pot)# 获取坐标p1, p2, p3, p4 = pot# 获取待处理图片的各个宽度和长度width2 = int(np.sqrt((p4[0] - p1[0]) ** 2 + (p4[1] - p1[1]) ** 2))width1 = int(np.sqrt((p3[0] - p2[0]) ** 2 + (p3[1] - p2[1]) ** 2))height1 = int(np.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] + p1[1]) ** 2))height2 = int(np.sqrt((p3[0] - p4[0]) ** 2 + (p3[1] - p4[1]) ** 2))# 得到最大宽度和长度width_max = int(max(width1, width2))height_max = int(max(height1, height2))# 定义处理后图像的坐标pot_aft = np.array(([0,0], [width_max - 1, 0],[width_max - 1, height_max - 1], [0, height_max - 1]),dtype= 'float32')# 获取变换矩阵m = cv2.getPerspectiveTransform(pot, pot_aft)# 透视变换warped = cv2.warpPerspective(img, m, (width_max, height_max))return warped# 进行透视变换修正图像
# 二值图
img_per = Perspective_transformation(img, docCnt.reshape((4,2)))
cv_show('img_per', img_per)
# 彩色图
img_color_per = Perspective_transformation(img_org, docCnt.reshape((4,2)))
cv_show('img_color_per', img_color_per)

得到透视变换后的二值图:
在这里插入图片描述
得到透视变换后的彩色图:
在这里插入图片描述

2.判断选项是否为正确答案

要判断是否为正确答案则需要判断选项,所以要获取选项的特征

在透视变换后的图像上,各个选项的形状大致是差不多的,所以只需要规定一些条件就可以把选项图像筛选出来,在此之前则需要得到选项的尺寸以及坐标,采取的方法为轮廓检测。

contours, __ = cv2.findContours(img_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
answer_pos = []
for i in contours:# 得到各个轮廓的外接矩形的特征x, y, w, h = cv2.boundingRect(i)a = w / h# 筛选条件为长和宽的大小以及比例if w >= 20 and h >= 20 and a >= 0.9 and a <= 1.1:answer_pos.append(i)
# print('answer_pos', answer_pos)

得到选项的图像轮廓之后,需要做一些排序,因为所获取的坐标顺序可能不符合实际选项的顺序。
观察图中选项的位置,同一道题目的不同选项,其纵坐标不同横坐标相同,不同题目同一列的选项纵坐标相同而横坐标不同。所以排序坐标也就可以排序选项的轮廓

# 轮廓排序
def sort_contours(cnt, method= "left-to-right"):reverse = Falsei = 0if method == "right-to-left" or method == "bottom-to-top":reverse = Trueif method == "top-to-bottom" or method == "bottom-to-top":i = 1# 获取轮廓信息bound = [cv2.boundingRect(c) for c in cnt]# print(cnt)print(bound)# 按照y纵坐标进行排序(cnt, bound) = zip(*sorted(zip(cnt, bound), key= lambda b: b[1][i], reverse= reverse))print(bound)return  cnt, boundanswer_pos, __ = sort_contours(answer_pos, method= "top-to-bottom")
# print(answer_pos)

我们得到了各个选项的轮廓,也就是位置,接下来要判断那个选项被选了出来,对比答案判断正确与否

在原图,被选出来的选项被涂黑,而在二值图下,被选出来的选项反而比较白(也可能白底黑选项,取决于阈值检测),所以可以通过判断白像素点的数目来得到被选出的那个选项,然后与正确选项对比就可以得到最终得分。

correct = 0
# 利用枚举获取每一行的选项
# np.arange返回的是一个序列
print('len(answer_pos)', len(answer_pos))
for i, j in enumerate(np.arange(0, len(answer_pos), 5)):print(i, j)# 获取每一行的轮廓ants = sort_contours(answer_pos[j: j+5])[0]bubbled = Nonefor q, j in enumerate(ants):print(q)# 制作掩膜mask = np.zeros(img_bin.shape, dtype= 'uint8')mask = cv2.drawContours(mask, [j], -1, 255, -1)# cv_show('mask', mask) 可以去掉注释观察下掩膜。就是选项所在的位置是白色其他为黑色# 保留答案部分img_mask = cv2.bitwise_and(img_bin, img_bin, mask= mask)# cv_show('img_mask', img_mask) 可以去掉注释观察下。就是只保留了掩膜选项部分的图像其他部分为黑# 返回灰度值不为0的像素数目total = cv2.countNonZero(img_mask)if bubbled is None or total > bubbled[0]:# 保存这个选项的白像素数目和在这道题目的选项索引bubbled = (total, q)# 得到正确答案代表的索引answer = ANSWER_KEY[i]if bubbled[1] == answer:correct += 1color = (0, 255, 0)# 标出正确的答案img_color_per = cv2.drawContours(img_color_per, ants, q, color, thickness=2)

得到的正确选项的图像
在这里插入图片描述

3.最后计算正确率,打印到图片上

all_answer = (correct / 5) * 100
print(all_answer)
cv_show('img_color_per', img_color_per)
# 打印最后的得分
img_color_per = cv2.putText(img_color_per, 'your grade:'+str(all_answer)+'%',(10,10), cv2.FONT_HERSHEY_COMPLEX, 0.6, (255,0,0), 1, bottomLeftOrigin= False)
cv_show('img_color_per_grade', img_color_per)

最终成果:
在这里插入图片描述

完整代码

import numpy as np
import cv2img_path = './test_01.png'# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()# 获取要变换图像的四点坐标
def get_point(pot):ret = np.zeros((4,2), dtype= 'float32')# 按列相加就是(x+y)横坐标与列坐标相加a = np.sum(pot, axis= 1)# 小的是左上坐标ret[0] = pot[np.argmin(a)]# 大的是右下坐标ret[2] = pot[np.argmax(a )]# 按列相减就是|x-y|横坐标和纵坐标相减a = np.diff(pot, axis= 1)# 小的是右上坐标ret[1] = pot[np.argmin(a)]# 大的是左下坐标ret[3] = pot[np.argmax(a)]return ret# 透视变换
def Perspective_transformation(img, pot):pot = get_point(pot)# 获取坐标p1, p2, p3, p4 = pot# 获取待处理图片的各个宽度和长度width2 = int(np.sqrt((p4[0] - p1[0]) ** 2 + (p4[1] - p1[1]) ** 2))width1 = int(np.sqrt((p3[0] - p2[0]) ** 2 + (p3[1] - p2[1]) ** 2))height1 = int(np.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] + p1[1]) ** 2))height2 = int(np.sqrt((p3[0] - p4[0]) ** 2 + (p3[1] - p4[1]) ** 2))# 得到最大宽度和长度width_max = int(max(width1, width2))height_max = int(max(height1, height2))# 定义处理后图像的坐标pot_aft = np.array(([0,0], [width_max - 1, 0],[width_max - 1, height_max - 1], [0, height_max - 1]),dtype= 'float32')# 获取变换矩阵m = cv2.getPerspectiveTransform(pot, pot_aft)# 透视变换warped = cv2.warpPerspective(img, m, (width_max, height_max))return warped
# 轮廓排序
def sort_contours(cnt, method= "left-to-right"):reverse = Falsei = 0if method == "right-to-left" or method == "bottom-to-top":reverse = Trueif method == "top-to-bottom" or method == "bottom-to-top":i = 1# 获取轮廓信息bound = [cv2.boundingRect(c) for c in cnt]# print(cnt)print(bound)# 按照y纵坐标进行排序(cnt, bound) = zip(*sorted(zip(cnt, bound), key= lambda b: b[1][i], reverse= reverse))print(bound)return  cnt, bound# 读入图像
img_org = cv2.imread(img_path)
cv_show('img_org', img_org)
img = cv2.cvtColor(img_org, cv2.COLOR_BGR2GRAY)'''图像预处理'''
# 高斯滤波除去噪点
img = cv2.GaussianBlur(img, (3,3), 0, 0)
cv_show('img', img)# 边缘检测
img = cv2.Canny(img, 20, 200)
cv_show('img_canny', img)# 轮廓检测
contours, __  = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# img_copy = img.copy()
# img_copy = cv2.drawContours(img_copy, contours, -1, (0,255,0), 2)
# cv_show('img_con', img_copy)# 遍历所有轮廓找出面积最大的轮廓
if len(contours) > 0:# 根据cv2.contourArea函数进行降序排序cnt = sorted(contours, key= cv2.contourArea, reverse= True)# 遍历轮廓for i in cnt:# 计算周长long = cv2.arcLength(i, closed= True)# 近似轮廓为折线approx = cv2.approxPolyDP(i, 0.02 * long, closed= True)if len(approx) == 4:docCnt = approxprint(docCnt.shape)break# 进行透视变换修正图像
# 二值图
img_per = Perspective_transformation(img, docCnt.reshape((4,2)))
cv_show('img_per', img_per)
# 彩色图
img_color_per = Perspective_transformation(img_org, docCnt.reshape((4,2)))
cv_show('img_color_per', img_color_per)# 转化为二值图
__, img_bin = cv2.threshold(img_per, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv_show('img_bin', img_bin)contours, __ = cv2.findContours(img_bin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
answer_pos = []
for i in contours:x, y, w, h = cv2.boundingRect(i)a = w / hif w >= 20 and h >= 20 and a >= 0.9 and a <= 1.1:answer_pos.append(i)
# print('answer_pos', answer_pos)answer_pos, __ = sort_contours(answer_pos, method= "top-to-bottom")
# print(answer_pos)correct = 0
# 利用枚举获取每一行的选项
# np.arange返回的是一个序列
print('len(answer_pos)', len(answer_pos))
for i, j in enumerate(np.arange(0, len(answer_pos), 5)):print(i, j)# 获取每一行的轮廓ants = sort_contours(answer_pos[j: j+5])[0]bubbled = Nonefor q, j in enumerate(ants):print(q)# 制作掩膜mask = np.zeros(img_bin.shape, dtype= 'uint8')mask = cv2.drawContours(mask, [j], -1, 255, -1)# cv_show('mask', mask)# 保留答案部分img_mask = cv2.bitwise_and(img_bin, img_bin, mask= mask)# cv_show('img_mask', img_mask)# 返回灰度值不为0的像素数目total = cv2.countNonZero(img_mask)if bubbled is None or total > bubbled[0]:# 保存这个选项的白像素数目和在这道题目的选项索引bubbled = (total, q)# 得到正确答案代表的索引answer = ANSWER_KEY[i]if bubbled[1] == answer:correct += 1color = (0, 255, 0)# 标出正确的答案img_color_per = cv2.drawContours(img_color_per, ants, q, color, thickness=2)all_answer = (correct / 5) * 100
print(all_answer)
cv_show('img_color_per', img_color_per)
# 打印最后的得分
img_color_per = cv2.putText(img_color_per, 'your grade:'+str(all_answer)+'%',(10,10), cv2.FONT_HERSHEY_COMPLEX, 0.6, (255,0,0), 1, bottomLeftOrigin= False)
cv_show('img_color_per_grade', img_color_per)

结语

若有什么错误,还请评论指出,十分感谢。
共同进步

这篇关于python:Opencv4答题卡检测实例练习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/224186

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图