基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序

本文主要是介绍基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文引用了上海财经大学崔雪婷老师最优化理论与方法课程,课程链接如下:

【最优化理论与方法-第十二讲-二次规划】 https://www.bilibili.com/video/BV1vQ4y1P77A/?p=4&share_source=copy_web&vd_source=ec4b99096a4967b6330aae8eaef5e99b

崔老师讲最优化讲的特别好!满分推荐!

逐次凸近似(Successive Convex Approximation, SCA)是一种优化算法,主要应用于求解非凸优化问题。它的基本思想是将一个非凸问题转化为包含多个凸子问题的序列,通过不断的求解凸子问题逼近原问题的最优解。

 图1 非凸函数

现考虑如下非凸二次规划问题,其函数图像如图1所示。

问题1

其中,

原问题的目标函数可以通过特征值分解转化为凸函数减去凸函数的形式,凸函数减去凸函数未必是凸函数

[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立

其中,矩阵PN都是半正定矩阵,矩阵D的表达式如下所示:

其中,\lambda _{1},\lambda _{2},...,\lambda _{k}\geq 0,\lambda _{k+1},\lambda _{k+2},...< 0

原问题的目标函数可以转化为:

对目标函数的第二项-\left [ x,y \right ]N\left [ x,y \right ]^{T}在点\left ( x^{*},y^{*} \right )处进行凸近似,即在点\left ( x^{*},y^{*} \right )处进行一阶泰勒展开:

至此,原问题可转化为:

 问题2

这样一来,就可以将原来的非凸二次规划问题转化为凸二次规划问题进行求解。

定理:若\left ( x^{*},y^{*} \right )是问题2的最优解,则\left ( x^{*},y^{*} \right )必然是问题1的KKT点(在崔老师的视频中有证明)。

因此,只要找到一个点\left ( x^{*},y^{*} \right )使得\left ( x^{*},y^{*} \right )是问题二的最优解,即可求得原问题的近似最优解。(注意:SCA不能保证得到全局最优解,但解的质量较高)

读到这里,想必各位心中都会有一个疑问:\left ( x^{*},y^{*} \right )点要这么确定呢?SCA算法就是为了找到这样一个点\left ( x^{*},y^{*} \right ),算法步骤如下所示:

1)令k=0,\varepsilon=1\times 10^{-6},取\left ( x_{k},y_{k} \right )\epsilon feasible\: \: region(初值对结果的影响较大,建议取可行域中点);

2)求解近似优化问题(即问题2),得到子问题最优解\left ( x_{k+1},y_{k+1} \right );

3)若\left \| \left ( x_{k+1},y_{k+1} \right )\\ -\, \left ( x_{k},y_{k} \right )\ \right \|\leqslant \varepsilon,输出\left ( x_{k+1},y_{k+1} \right );否则,令k=k+1,转至2)。

MATLAB程序:

clear all
close all
clcQ=[1,0.5;0.5,-1];x=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
x0=[0.5;0.5];
x_temp=x0;
while(1)f_k=(x'*P*x-2*x_temp'*N*x+x_temp'*N*x_temp);sol=solvesdp(Constraints,f_k,ops);display([sol.info,' 目标函数值:',num2str(value(x_temp'*Q*x_temp))])x_temp_before=x_temp;x_temp=value(x);if sqrt(sum((x_temp-x_temp_before).^2)/length(x_temp))<1e-10breakend
end
x_result=x_tempX = gridsamp([-1 -1;1 1], 40);
[m,~]=size(X);
YX=zeros(m,1);
for i=1:size(X,1)x=X(i,:);y=x*Q*x';YX(i)=y;
end
X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);
YX = reshape(YX, size(X1));
figure(1), mesh(X1, X2, YX)%绘制预测表面
hold on
scatter3(x_temp(1),x_temp(2),x_temp'*Q*x_temp,200,'r','pentagram','filled')

结果展示:

原问题:

clear all
close all
clcx=sdpvar(2,1);
xmin=-1;
xmax=1;
Constraints=[];
Constraints=[Constraints,xmin<=x<=xmax];
Q=[1,0.5;0.5,-1];
[V,D] = eig(Q);%计算A的特征值对角阵D和特征向量V,使AV=VD成立
lambda_P=D;
lambda_N=-D;
lambda_P(find(D<0))=0;
lambda_N(find(D>0))=0;
P=V*lambda_P*V';
N=V*lambda_N*V';
% P-N
f=x'*Q*x;%x(1)^2-x(2)^2+x(1)*x(2)
% x'*P*x-x'*N*x
ops = sdpsettings('solver', 'gurobi', 'verbose', 0);
sol=solvesdp(Constraints,f,ops);
x=value(x);
display([sol.info,' 目标函数值:',num2str(value(x'*Q*x))])

问题属性:对于非凸二次规划问题,gurobi会将原问题转化为MIP问题进行求解,如图2所示。本文举的例子比较简单,gurobi可以在短时间内求解成功,但对于大规模的非凸二次规划问题,使用gurobi进行求解会面临NP-Hard问题,计算负担较大,用SCA算法可以大大缩短计算时间。

图2

其他子函数:

function  S = gridsamp(range, q)
%GRIDSAMP  n-dimensional grid over given range
%
% Call:    S = gridsamp(range, q)
%
% range :  2*n matrix with lower and upper limits
% q     :  n-vector, q(j) is the number of points
%          in the j'th direction.
%          If q is a scalar, then all q(j) = q
% S     :  m*n array with points, m = prod(q)% hbn@imm.dtu.dk  
% Last update June 25, 2002[mr n] = size(range);    dr = diff(range);
if  mr ~= 2 | any(dr < 0)error('range must be an array with two rows and range(1,:) <= range(2,:)')
end 
sq = size(q);
if  min(sq) > 1 | any(q <= 0)error('q must be a vector with non-negative elements')
end
p = length(q);   
if  p == 1,  q = repmat(q,1,n); 
elseif  p ~= nerror(sprintf('length of q must be either 1 or %d',n))
end % Check for degenerate intervals
i = find(dr == 0);
if  ~isempty(i),  q(i) = 0*q(i); end% Recursive computation
if  n > 1A = gridsamp(range(:,2:end), q(2:end));  % Recursive call[m p] = size(A);   q = q(1);S = [zeros(m*q,1) repmat(A,q,1)];y = linspace(range(1,1),range(2,1), q);k = 1:m;for  i = 1 : qS(k,1) = repmat(y(i),m,1);  k = k + m;end
else    S = linspace(range(1,1),range(2,1), q).';
end

这篇关于基于逐次凸近似(Successive Convex Approximation)的非凸二次规划问题求解---MATLAB程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222788

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决