3500/15 106M1079-01 支持先进和复杂的人工智能计算

2023-10-16 23:12

本文主要是介绍3500/15 106M1079-01 支持先进和复杂的人工智能计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3500/15 106M1079-01 支持先进和复杂的人工智能计算

耐能NPU IP系列允许ResNet、YOLO和其他深度学习网络在离线环境下的边缘设备上运行。耐能NPU IP为edge AI提供完整的硬件解决方案,包括硬件IP、编译器、模型压缩。它支持各种类型的卷积神经网络(CNN)模型,如Resnet-18、Resnet-34、Vgg16、GoogleNet和leNet,以及主流的深度学习框架,包括Caffe、Keras和TensorFlow。

耐能NPU IP系列功耗在0.5W以下,KDP 300版本功耗不到5mW。整个产品线的能效高于1.5 TOPS/W(注2)。通过采用滤波分解技术,可以将一个大规模的卷积计算块分割成若干个较小的卷积计算块进行并行计算。与可重构卷积加速技术一起,来自小块的计算结果将被整合,以实现更好的整体计算性能。通过耐能的模型压缩技术,未优化模型的尺寸可以缩小几十倍。

此外,耐能NPU可以与耐能的视觉识别软件相结合,为实时识别分析和响应提供解决方案。

KDP 300通过3D结构光和双镜头相机的图像分析支持3D实时面部识别。KDP 300也适用于要求超低功耗的边缘设备。包括计算和SRAM(静态随机存取存储器)在内的功率小于5mW。

KDP 500可以对海量人脸、手和身体姿势进行实时识别、分析和深度学习,非常适合智能家居和智能监控领域的应用。它的计算能力高达152 GOPS (500MHz)(每秒十亿次运算),同时保持100mW的功耗。

KDP 700支持更先进和复杂的人工智能计算,以及高端智能手机、机器人、无人机和智能监控设备的深度学习推理。它目前正处于开发阶段,预计将提供卓越的计算能力,峰值吞吐量可达4.4 TOPS(1GHz)(每秒万亿次运算),同时功耗保持在300~500mW。

注1:测量条件:CNN切片尺寸150x150,CNN帧率5fps,主频20Mhz。注2:能效因半导体工艺而异。在40 nm工艺下,耐能NPU的能效可以达到1.5TOPS/W以上  

51308351-175
51101318-900
TC-FXX101
51107404-100
PFS-778-D-5/1
10001/1/1
620-2030
FTA-T-08
SDS-C2-D2CM-1
620-2033
620-0090
51309150-225
620-0038C
51304516-250
51201557-100
51400159-HDW
621-1100RC
10205/1/1
10213/2/3
621-0010-AR
621-3580RC
51304441-200
10212/1/1
10201/1/1
10101/2/3
51199932-200
FC-TPSU-2430
51304446-150
TC-IOLI01

这篇关于3500/15 106M1079-01 支持先进和复杂的人工智能计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/221383

相关文章

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后