【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】

本文主要是介绍【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、全功能AI开发平台介绍
  • 二、AI项目落地应用流程(以文本分类为例)
    • 2-0、项目开始
    • 2-1、项目背景
    • 2-2、数据准备介绍
    • 2-3、项目数据
    • 2-4、建模调参介绍
    • 2-5、项目的建模调参
    • 2-6、开发部署
    • 2-7、项目在公有云的部署
  • 附录:调用api代码
  • 总结

一、全功能AI开发平台介绍

在这里插入图片描述

全功能AI开发平台是一个综合性的平台,旨在支持各种人工智能(AI)应用的开发、部署和管理。这些平台通常提供一系列工具、库和服务,以帮助开发者、数据科学家和工程师创建和操作各种类型的AI应用。以下是全功能AI开发平台通常提供的一些功能和特性

  • 数据管理:提供数据存储、数据集成、数据清洗和数据标注工具,以支持AI模型的训练和评估。
  • 模型开发:包括模型训练、调优和验证工具,以及深度学习框架集成,使开发者能够创建自定义AI模型。
  • 自动化ML(AutoML):提供自动化工具,可以自动选择和调整模型参数,以简化模型开发流程。
  • 部署和托管:支持AI模型的部署到云端或边缘设备,并提供自动扩展和管理模型的能力。
  • 可解释性和监控:提供模型解释性工具,以及实时性能监控和错误检测,以确保AI应用的可靠性和可解释性。
  • 集成和API:支持将AI功能集成到现有应用程序中,以及提供API,以便其他应用程序可以调用AI模型。
  • 安全性和隐私:提供安全性和隐私保护功能,以确保AI应用的数据和模型的安全性。
  • 可视化工具:提供可视化界面,以简化模型训练和部署的管理和监控。

下面以百度BML全功能AI开发平台为例进行介绍(一站式AI开发流程如下),且底层框架内置文心大模型基座

在这里插入图片描述

二、AI项目落地应用流程(以文本分类为例)

2-0、项目开始

任务抽象

  • 项目有多少个任务场景
  • 每个任务场景需要开发多少个模型
  • 部署场景的约束是什么

任务流程介绍

  • 采集/标注数据
  • 选择预训练模型
  • 数据增强策略
  • 超参数调整
  • 模型训练以及评估
  • 分析报告

2-1、项目背景

项目背景介绍

在我们的生活和工作中,很多事情都可以转化为一个分类问题来解决,比如“上班坐公交还是坐地铁”、“吃米饭还是吃面条”等等可以转化为二分类问题。自然语言处理领域也是这样,大量的任务可以用文本分类的方式来解决,比如垃圾文本识别、涉黄涉暴文本识别、意图识别、文本匹配、命名实体识别等,有着极其广泛的应用场景:

  • 投诉信息分类:训练客服投诉信息的自动分类,将每个用户投诉的内容进行分类管理,节省大量客服人力。
  • 媒体文章分类:训练网络媒体文章的自动分类,进而实现各类文章的自动分类。
  • 文本审核:定制训练文本审核的模型,如训练文本中是否含有违规/偏激性质的描述。

中文新闻文本标题分类任务简介

  • 新闻分类是文本分类中常见的应用场景。在传统分类模式下,往往是通过人工对新闻内容进行核对,从 而将新闻划分到合适的类别中。这种方式会消耗大量的人力资源,并且效率不高。采用深度学习的方法可以取得较高的分类精度,是新闻推荐等场景下的基础任务。

使用BML开发平台,注册账号并且开始使用:官方链接
在这里插入图片描述

2-2、数据准备介绍

项目数据

  • 项目任务需要什么样的数据
  • 如何制作高质量的数据集(图片数据:是否存在高度相似、模糊的图片,进行数据的清洗)
  • 数据量不够怎么办(每一类的图片数量是否大于80张?是否需要增加图片以平衡类别数量?进行上采样?)

高质量数据

  • 数据标注正确
  • 尽量提升数据的类别,提升模型的泛化能力
  • 保证训练数据尽量与业务数据接近,各个类别平衡
  • 数据划分正确,测试集验证集不会泄露。
  • 以结果为导向看数据:看哪个类别的数据模型不太擅长识别,即分析badcase,采用数据增强增加数据数量。

数据增强(以图片的数据增强为例)

  • 对比度
  • 色平衡
  • 亮度
  • 锐化
  • 目标框裁剪
  • 标注框旋转
  • 标注框翻转
  • 水平裁剪

BML平台优势

  • 智能标注
  • 多人标注
  • 数据质检报告
  • 支持与数据采集设备直连
  • BML自动化数据清洗:去近似、去模糊、裁剪、旋转、镜像。
  • 自动数据增强。开放超过40种算子,灵活配置

在这里插入图片描述

2-3、项目数据

本文采用中文新闻文本标题分类数据集进行示例:数据

在这里插入图片描述

  • 点击数据集管理,并创建数据集。

在这里插入图片描述

  • 在创建数据集界面,设置好相关信息并点击完成

在这里插入图片描述

  • 填写导入配置信息: 设置数据的标注状态,是否为有标注信息,从本地导入,上传txt文本。之后点击上传txt文本将下载好的数据上传。
    在这里插入图片描述

  • 数据集创建完成后,可以在数据集管理界面看到导入的数据,并可以查看到导入状态、标注状态等信息。
    在这里插入图片描述

2-4、建模调参介绍

建模调参

  • 选择什么样的模型
  • 有没有精度更高的模型
  • 如何调优,进一步提升性能
  • 要不要购买服务器?

BML平台优势

  • 提供预置模型调参、NoteBook建模、自定义作业建模等三种开发方式,满足不同需求的开发者。

在这里插入图片描述

  • 自动调参:以某种高级策略搜索超参组合,自动获得优秀的模型效果
    在这里插入图片描述

2-5、项目的建模调参

  • 选择使用预置模型调参,选择自然语言处理模型,点击创建任务
    在这里插入图片描述
  • 选择类型为文本分类-类型为单文本单标签。
    在这里插入图片描述
  • 创建完成后点击新建运行。
    在这里插入图片描述
  • 添加数据可以选择刚才导入的数据集,也可以选择公开数据集(二分类。数据量较少),需要注意的是,如果选择公开数据集,可以跳过前边的所有步骤。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 在配置模型阶段,可以进行相关预训练模型的配置以及超参数的设置。Tiny版本模型更小,训练速度更快,但是精度略差。之后设置训练资源,以及选择计算节点。提交运行任务。
    在这里插入图片描述
    在这里插入图片描述
  • 训练结束后点击评估报告,可以查看模型的表现情况(由于时间原因,我这里选择的是公开二分类数据进行训练), 点击配置详情可以查看训练时设置的参数,训练可视化可以查看训练过程中的指标变化

在这里插入图片描述
在这里插入图片描述

  • 进一步测试模型可以点击发布按钮进行模型的发布, 发布模型之后可以在发布模型这一列看到已经发布的模型,这时候点击评估报告可以看到模型校验按钮,可以进行模型的校验,输入文本进行校验。

在这里插入图片描述
在这里插入图片描述

2-6、开发部署

部署环境

云端:公有云部署,即将模型部署为在线服务,从而以REST API的方式提供推理预测能力。且公有云部署是最快捷的模型部署方式,不同类型的模型在执行公有云部署时的流程基本一致,当部署后在线API的接口与模型有关。

  • 易于部署迭代
  • 可使用大模型,快速上线
  • 高延迟
  • 成本线性升高

边缘端

  • 算力限制
  • 前期开发部署成本高
  • 低延迟
  • 成本可控

在线服务说明:在线服务当前仅允许一个模型版本处于上线状态,若上线时有其他模型版本在线,则会将当前版本下线并且上线新的版本。服务状态以及其含义说明如下所示:

在这里插入图片描述

在这里插入图片描述

2-7、项目在公有云的部署

  • 在模型仓库中选择发布的模型版本,之后进行在线服务部署。
    在这里插入图片描述
    在这里插入图片描述
  • 在线服务设置:设置服务名称以及接口地址,模型配置阶段设置已经发布的模型以及对应版本,在资源配置阶段设置好需要使用的配置,按照小时计费。
    在这里插入图片描述
  • 创建好在线服务之后,创建应用,之后调用接口进行服务调用

在这里插入图片描述
在这里插入图片描述

  • 之后使用ak、sk以及请求url来进行接口的调用
    在这里插入图片描述
    在这里插入图片描述

附录:调用api代码

import requests
import jsonAPI_KEY = ""
SECRET_KEY = ""def main():url = "https://aip.baidubce.com/rpc/2.0/nlp/v1/sentiment_classify?charset=&access_token=" + get_access_token()payload = json.dumps("")headers = {'Content-Type': 'application/json','Accept': 'application/json'}response = requests.request("POST", url, headers=headers, data=payload)print(response.text)def get_access_token():"""使用 AK,SK 生成鉴权签名(Access Token):return: access_token,或是None(如果错误)"""url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}return str(requests.post(url, params=params).json().get("access_token"))if __name__ == '__main__':main()

参考文章:
百度BML全功能开发平台官网.
数据集管理.
EasyDL文本价格整体说明.
开发文档训练、部署等.
鉴权认证机制.
服务与支持文档.
示例代码中心.


总结

人有悲欢离合,月有阴晴圆缺,此事古难全。

这篇关于【从0开发】百度BML全功能AI开发平台【实操:以部署情感分析模型为例】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220167

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx