[bzoj3622][DP][容斥原理]已经没有什么好害怕的了

2023-10-16 03:38

本文主要是介绍[bzoj3622][DP][容斥原理]已经没有什么好害怕的了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

这里写图片描述

Input

这里写图片描述

Output

这里写图片描述

Sample Input

4 2

5 35 15 45

40 20 10 30

Sample Output

4

HINT

输入的2*n个数字保证全不相同。

还有输入应该是第二行是糖果,第三行是药片

题解

DP呀..
从小到大排序
显然我们要找 n+k2 n + k 2 个糖果比药片大的组合
朴素dp方程,设 f[i][j] f [ i ] [ j ] 表示前 i i 个中找到j个合法组合 其它不管的数量
转移有

f[i][j]=f[i1][j]+f[i1][j1](pos[i]j+1) f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − 1 ] ∗ ( p o s [ i ] − j + 1 )

其中 pos[i] p o s [ i ] 表示 i i 最多能取到哪一位
会有重复
因为
a1>b1 a2>b2 a3>b3
选(a1,b1,a2,b2)和(a1,b1,a3,b3)会被判为两种不同情况
于是设g[i]表示 n n 个钟只有i个合法情况的状态数
转移有
g[i]=f[n][i](ni)!j=i+1ng[j] g [ i ] = f [ n ] [ i ] ∗ ( n − i ) ! − ∑ j = i + 1 n g [ j ]

前面表示只取i个,后面任选
然后去掉比i多的数目的算到i里的东西
就可以了。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define mod 1000000009
#define LL long long
using namespace std;
LL pow_mod(LL a,LL b)
{LL ret=1;while(b){if(b&1)ret=ret*a%mod;a=a*a%mod;b>>=1;}return ret;
}
LL inv[2005],pre[2005];
LL C(int n,int m){return pre[n]*inv[m]%mod*inv[n-m]%mod;}
int a[2005],b[2005],n,m,pos[2005];
LL f[2005][2005],g[2005];
void dl(LL &x,LL y){x-=y;if(x<0)x+=mod;}
int main()
{pre[0]=1;for(int i=1;i<=2000;i++)pre[i]=pre[i-1]*i%mod;inv[2000]=pow_mod(pre[2000],mod-2);for(int i=1999;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;scanf("%d%d",&n,&m);if((n+m)%2){puts("0");return 0;}m=(n+m)/2;for(int i=1;i<=n;i++)scanf("%d",&a[i]);for(int i=1;i<=n;i++)scanf("%d",&b[i]);sort(a+1,a+1+n);sort(b+1,b+1+n);int pa=0;for(int i=1;i<=n;i++){while(b[pa+1]<a[i]&&pa<n)pa++;pos[i]=pa;}f[0][0]=1;for(int i=1;i<=n;i++)for(int j=0;j<=i;j++){if(j!=0)f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(0,pos[i]-j+1))%mod;else f[i][j]=f[i-1][j];}for(int i=n;i>=m;i--){g[i]=f[n][i]*pre[n-i]%mod;for(int j=i+1;j<=n;j++)dl(g[i],g[j]*C(j,i)%mod);}printf("%lld\n",g[m]);return 0;
}

这篇关于[bzoj3622][DP][容斥原理]已经没有什么好害怕的了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/218762

相关文章

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持