重要度采样 important sample及 MATLAB,python实现

2023-10-15 14:18

本文主要是介绍重要度采样 important sample及 MATLAB,python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1实践

MATLAB:

% Demo Kalman + Sequential Importance Sampling for linear gaussian model
% use prior proposal and locally optimal proposalT=100;
sv=1;
sw=sqrt(1);
phi=0.95;% simulate data according to the model
x=zeros(1,T);
y=zeros(1,T);
x=randn(1);
for k=2:Tx(1,k)=phi*x(1,k-1)+sv.*randn(1);
end
y=x+sw.*randn(1,T);
plot(y)
% load simulatedstatesobs   data corresponding to lecture notes% number of samples/particles
N=1000;% exact inference using Kalman filter
mp=zeros(1,T);
mf=zeros(1,T);
vp=zeros(1,T);
vf=zeros(1,T);
my=zeros(1,T);
vy=zeros(1,T);
loglike=0;mp(1,1)=0;
vp(1,1)=1;
my(1,1)=mp(1,1);
vy(1,1)=vp(1,1)+sw^2;
loglike=-0.5*log(2*pi*vy(1,1))-0.5*(y(1,1)-my(1,1))^2/vy(1,1);for k=1:T% updatevf(1,k)=sw^2*vp(1,k)/(vp(1,k)+sw^2);mf(1,k)=vf(1,k)*(mp(1,k)/vp(1,k)+y(1,k)/sw^2);% predictif (k<T)mp(1,k+1)=phi*mf(1,k);vp(1,k+1)=phi^2*vf(1,k)+sv^2;my(1,k+1)=mp(1,k+1);vy(1,k+1)=vp(1,k+1)+sw^2;loglike=loglike-0.5*log(2*pi*vy(1,k+1))-0.5*(y(1,k+1)-my(1,k+1))^2/vy(1,k+1);end
end% prior proposal
xs1=zeros(T,N);
lw1=zeros(T,N);
w1=zeros(T,N);
wnorm1=zeros(T,N);
ess1=zeros(1,T);
xmean1=zeros(1,T);
xvar1=zeros(1,T);
varlogw1=zeros(1,T);% locally optimal proposal
xs2=zeros(T,N);
lw2=zeros(T,N);
w2=zeros(T,N);
wnorm2=zeros(T,N);
ess2=zeros(1,T);
xmean2=zeros(1,T);
xvar2=zeros(1,T);
varlogw2=zeros(1,T);% SIS using prior
for k=1:Tif (k==1)% sample particles initial distributionxs1(k,:)=randn(1,N);% compute log weights for numerical stabilitylw1(k,:)=-0.5*log(2*pi*sw^2).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-xs1(k,:)).^2./sw^2;else% propagate particles according to prior xs1(k,:)=phi.*xs1(k-1,:)+sv.*randn(1,N);% compute log weights for numerical stabilitylw1(k,:)=lw1(k-1,:)-0.5*log(2*pi*sw^2).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-xs1(k,:)).^2./sw^2;endvarlogw1(1,k)=var(lw1(k,:));lmax=max(lw1(k,:));w1(k,:)=exp(lw1(k,:)-lmax);  % correct only up to a multiplicative factor for unnormalized weightswnorm1(k,:)=w1(k,:)./sum(w1(k,:));% effective sample sizeess1(1,k)=1/sum(wnorm1(k,:).^2);% compute estimate of E(Xk|y1:k)xmean1(1,k)=sum(wnorm1(k,:).*xs1(k,:));% compute estimate of Var(Xk|y1:k)xvar1(1,k)=sum(wnorm1(k,:).*xs1(k,:).^2)-xmean1(1,k)^2;
end% SIS using optimal% variance locally optimal proposal
ss2=sw^2*sv^2/(sv^2+sw^2);
ss=sqrt(ss2);for k=1:Tif (k==1)% sample particles initial proposal; e.g p(x1|y1)xs2(k,:)=ss2*y(1,k)*ones(1,N)/sw^2+ss.*randn(1,N);% compute log weights for numerical stabilitylw2(k,:)=-0.5*log(2*pi*(sw^2+sv^2)).*ones(1,N)-0.5*(y(1,k)*ones(1,N)).^2./(sw^2+sv^2);else% propagate particles according to p(xk|xk-1,yk) xs2(k,:)=ss2.*(phi.*xs2(k-1,:)./sv^2+y(1,k)/sw^2)+ss.*randn(1,N);lw2(k,:)=lw2(k-1,:)-0.5*log(2*pi*(sw^2+sv^2)).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-phi.*xs2(k-1,:)).^2./(sw^2+sv^2);endvarlogw2(1,k)=var(lw2(k,:));lmax=max(lw2(k,:));w2(k,:)=exp(lw2(k,:)-lmax);  % correct only up to a multiplicative factor for unnormalized weightswnorm2(k,:)=w2(k,:)./sum(w2(k,:));% effective sample sizeess2(1,k)=1/sum(wnorm2(k,:).^2);% compute estimate of E(Xk|y1:k)xmean2(1,k)=sum(wnorm2(k,:).*xs2(k,:));% compute estimate of Var(Xk|y1:k)xvar2(1,k)=sum(wnorm2(k,:).*xs2(k,:).^2)-xmean2(1,k)^2;
end% display ESS
figure(1)
plot(ess1,'r')
hold on
plot (ess2,'b')
print essprioroptimalhighsw -depsc
axis([1 T 0 N])
% display variance log weightsfigure(2)
subplot(2,1,1)
plot(varlogw1,'r');
subplot(2,1,2)
plot(varlogw2,'b');
print varlogweightprioroptimalhighsw -depsc% display absolute error exact conditional mean versus SIS
figure(3)
plot(abs(mf-xmean1),'r');
hold on
plot(abs(mf-xmean2),'b');
axis([1 T 0 5])
print errorxmeanprioroptkalman -depsc% display exact variance versus SIS
figure(4)
plot(xvar1,'r');
hold on
plot(xvar2,'b');
plot(vf,'c');
axis([1 T 0 3])
print vmeanprioroptkalman -depschold off

python:

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 22 21:19:55 2019@author: win10
"""import numpy as np
from scipy import stats
from numpy.random import randn,random
import matplotlib.pyplot as pltdef gaussian_particles(mean,std,N):particles = np.empty((N,1))particles[:, 0] = mean + (randn(N) * std)return particlesdef predict(particles, d, std, dt=1.):N = len(particles)degradation = (d * dt) + (randn(N) * std)return degradationdef update(particles, weights, z, R):weights.fill(1.)weights = weights*stats.norm(z, R).pdf(particles)weights += 1.e-100weights /= sum(weights)def simple_resample(particles, weights):N = len(particles)cumulative_sum = np.cumsum(weights)cumulative_sum[-1] = 1.indexes = np.searchsorted(cumulative_sum, random(N))# resample according to indexesparticles[:] = particles[indexes]weights.fill(1.0 / N)def neff(weights):return 1. / np.sum(np.square(weights))def estimate(particles, weights):'''returns the mean and variance of the weighted particles.'''mean = np.average(particles, weights=weights, axis = 0)var  = np.average((particles - mean)**2, weights=weights, axis = 0)return mean, varif __name__ == '__main__':N = 100 # Number of particlesx_0 = 0.1 #initial statex_N = 0.001  # Noise covariance in the systemx_R = 0.001  # Noise covariance in the measurementT = 10 # Time stepsd = 0.001 # very simple State update model# Initial particles, gaussian distributedparticles = gaussian_particles(x_0,x_N,N)weights = np.zeros(N)true_state = [0.1]for t in range(T):# measurement. We just add some random sensor noisetrue_state.append(true_state[t] + 0.001)z = true_state[t] + (randn(N) * x_R)# predict particlespred_z = predict(particles, d, x_N)# updated Observationz_updated = particles + (randn(N) * x_R)# incorporate measurements and update our belief- posteriorupdate(particles, weights, z=z, R=x_R)# resample if number of effective particles drops below N/2if neff(weights) < N/2:simple_resample(particles, weights)mu, var = estimate(particles, weights)plt.plot(np.arange(len(true_state)), true_state)

参考:
1 Gaussian Process with Particle Filter - Part 2 python 源码;
2 Oxford 课站 含MATLAB code;
3 豆瓣 粒子群滤波总结

这篇关于重要度采样 important sample及 MATLAB,python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218254

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可