重要度采样 important sample及 MATLAB,python实现

2023-10-15 14:18

本文主要是介绍重要度采样 important sample及 MATLAB,python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1实践

MATLAB:

% Demo Kalman + Sequential Importance Sampling for linear gaussian model
% use prior proposal and locally optimal proposalT=100;
sv=1;
sw=sqrt(1);
phi=0.95;% simulate data according to the model
x=zeros(1,T);
y=zeros(1,T);
x=randn(1);
for k=2:Tx(1,k)=phi*x(1,k-1)+sv.*randn(1);
end
y=x+sw.*randn(1,T);
plot(y)
% load simulatedstatesobs   data corresponding to lecture notes% number of samples/particles
N=1000;% exact inference using Kalman filter
mp=zeros(1,T);
mf=zeros(1,T);
vp=zeros(1,T);
vf=zeros(1,T);
my=zeros(1,T);
vy=zeros(1,T);
loglike=0;mp(1,1)=0;
vp(1,1)=1;
my(1,1)=mp(1,1);
vy(1,1)=vp(1,1)+sw^2;
loglike=-0.5*log(2*pi*vy(1,1))-0.5*(y(1,1)-my(1,1))^2/vy(1,1);for k=1:T% updatevf(1,k)=sw^2*vp(1,k)/(vp(1,k)+sw^2);mf(1,k)=vf(1,k)*(mp(1,k)/vp(1,k)+y(1,k)/sw^2);% predictif (k<T)mp(1,k+1)=phi*mf(1,k);vp(1,k+1)=phi^2*vf(1,k)+sv^2;my(1,k+1)=mp(1,k+1);vy(1,k+1)=vp(1,k+1)+sw^2;loglike=loglike-0.5*log(2*pi*vy(1,k+1))-0.5*(y(1,k+1)-my(1,k+1))^2/vy(1,k+1);end
end% prior proposal
xs1=zeros(T,N);
lw1=zeros(T,N);
w1=zeros(T,N);
wnorm1=zeros(T,N);
ess1=zeros(1,T);
xmean1=zeros(1,T);
xvar1=zeros(1,T);
varlogw1=zeros(1,T);% locally optimal proposal
xs2=zeros(T,N);
lw2=zeros(T,N);
w2=zeros(T,N);
wnorm2=zeros(T,N);
ess2=zeros(1,T);
xmean2=zeros(1,T);
xvar2=zeros(1,T);
varlogw2=zeros(1,T);% SIS using prior
for k=1:Tif (k==1)% sample particles initial distributionxs1(k,:)=randn(1,N);% compute log weights for numerical stabilitylw1(k,:)=-0.5*log(2*pi*sw^2).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-xs1(k,:)).^2./sw^2;else% propagate particles according to prior xs1(k,:)=phi.*xs1(k-1,:)+sv.*randn(1,N);% compute log weights for numerical stabilitylw1(k,:)=lw1(k-1,:)-0.5*log(2*pi*sw^2).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-xs1(k,:)).^2./sw^2;endvarlogw1(1,k)=var(lw1(k,:));lmax=max(lw1(k,:));w1(k,:)=exp(lw1(k,:)-lmax);  % correct only up to a multiplicative factor for unnormalized weightswnorm1(k,:)=w1(k,:)./sum(w1(k,:));% effective sample sizeess1(1,k)=1/sum(wnorm1(k,:).^2);% compute estimate of E(Xk|y1:k)xmean1(1,k)=sum(wnorm1(k,:).*xs1(k,:));% compute estimate of Var(Xk|y1:k)xvar1(1,k)=sum(wnorm1(k,:).*xs1(k,:).^2)-xmean1(1,k)^2;
end% SIS using optimal% variance locally optimal proposal
ss2=sw^2*sv^2/(sv^2+sw^2);
ss=sqrt(ss2);for k=1:Tif (k==1)% sample particles initial proposal; e.g p(x1|y1)xs2(k,:)=ss2*y(1,k)*ones(1,N)/sw^2+ss.*randn(1,N);% compute log weights for numerical stabilitylw2(k,:)=-0.5*log(2*pi*(sw^2+sv^2)).*ones(1,N)-0.5*(y(1,k)*ones(1,N)).^2./(sw^2+sv^2);else% propagate particles according to p(xk|xk-1,yk) xs2(k,:)=ss2.*(phi.*xs2(k-1,:)./sv^2+y(1,k)/sw^2)+ss.*randn(1,N);lw2(k,:)=lw2(k-1,:)-0.5*log(2*pi*(sw^2+sv^2)).*ones(1,N)-0.5*(y(1,k)*ones(1,N)-phi.*xs2(k-1,:)).^2./(sw^2+sv^2);endvarlogw2(1,k)=var(lw2(k,:));lmax=max(lw2(k,:));w2(k,:)=exp(lw2(k,:)-lmax);  % correct only up to a multiplicative factor for unnormalized weightswnorm2(k,:)=w2(k,:)./sum(w2(k,:));% effective sample sizeess2(1,k)=1/sum(wnorm2(k,:).^2);% compute estimate of E(Xk|y1:k)xmean2(1,k)=sum(wnorm2(k,:).*xs2(k,:));% compute estimate of Var(Xk|y1:k)xvar2(1,k)=sum(wnorm2(k,:).*xs2(k,:).^2)-xmean2(1,k)^2;
end% display ESS
figure(1)
plot(ess1,'r')
hold on
plot (ess2,'b')
print essprioroptimalhighsw -depsc
axis([1 T 0 N])
% display variance log weightsfigure(2)
subplot(2,1,1)
plot(varlogw1,'r');
subplot(2,1,2)
plot(varlogw2,'b');
print varlogweightprioroptimalhighsw -depsc% display absolute error exact conditional mean versus SIS
figure(3)
plot(abs(mf-xmean1),'r');
hold on
plot(abs(mf-xmean2),'b');
axis([1 T 0 5])
print errorxmeanprioroptkalman -depsc% display exact variance versus SIS
figure(4)
plot(xvar1,'r');
hold on
plot(xvar2,'b');
plot(vf,'c');
axis([1 T 0 3])
print vmeanprioroptkalman -depschold off

python:

# -*- coding: utf-8 -*-
"""
Created on Mon Apr 22 21:19:55 2019@author: win10
"""import numpy as np
from scipy import stats
from numpy.random import randn,random
import matplotlib.pyplot as pltdef gaussian_particles(mean,std,N):particles = np.empty((N,1))particles[:, 0] = mean + (randn(N) * std)return particlesdef predict(particles, d, std, dt=1.):N = len(particles)degradation = (d * dt) + (randn(N) * std)return degradationdef update(particles, weights, z, R):weights.fill(1.)weights = weights*stats.norm(z, R).pdf(particles)weights += 1.e-100weights /= sum(weights)def simple_resample(particles, weights):N = len(particles)cumulative_sum = np.cumsum(weights)cumulative_sum[-1] = 1.indexes = np.searchsorted(cumulative_sum, random(N))# resample according to indexesparticles[:] = particles[indexes]weights.fill(1.0 / N)def neff(weights):return 1. / np.sum(np.square(weights))def estimate(particles, weights):'''returns the mean and variance of the weighted particles.'''mean = np.average(particles, weights=weights, axis = 0)var  = np.average((particles - mean)**2, weights=weights, axis = 0)return mean, varif __name__ == '__main__':N = 100 # Number of particlesx_0 = 0.1 #initial statex_N = 0.001  # Noise covariance in the systemx_R = 0.001  # Noise covariance in the measurementT = 10 # Time stepsd = 0.001 # very simple State update model# Initial particles, gaussian distributedparticles = gaussian_particles(x_0,x_N,N)weights = np.zeros(N)true_state = [0.1]for t in range(T):# measurement. We just add some random sensor noisetrue_state.append(true_state[t] + 0.001)z = true_state[t] + (randn(N) * x_R)# predict particlespred_z = predict(particles, d, x_N)# updated Observationz_updated = particles + (randn(N) * x_R)# incorporate measurements and update our belief- posteriorupdate(particles, weights, z=z, R=x_R)# resample if number of effective particles drops below N/2if neff(weights) < N/2:simple_resample(particles, weights)mu, var = estimate(particles, weights)plt.plot(np.arange(len(true_state)), true_state)

参考:
1 Gaussian Process with Particle Filter - Part 2 python 源码;
2 Oxford 课站 含MATLAB code;
3 豆瓣 粒子群滤波总结

这篇关于重要度采样 important sample及 MATLAB,python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/218254

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre