并行算法的设计与分析

2023-10-15 10:58
文章标签 分析 设计 并行算法

本文主要是介绍并行算法的设计与分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

并行算法设计

任务并行

数据并行

与任务并行不同,前者是划分操作和计算任务,核心对于数据进行不同的运算;后者是划分数据,而核心对于数据进行相同的运算。

其他任务划分方法

搜索分解

将搜索树的每个子树划分成一个任务,与数据分解的区别在于,前者的所有计算工作都是有用的,对于后者一旦找到解,其他搜索工作也停止
工作量可能大于也可能小于串行算法。

并行算法分析

性能评价标准

运行时间

T p T_p Tp并行算法开始到最后一个进程结束所需要的时间。

并行算法额外总开销

T o = p T p − T s T_o=pT_p-T_s To=pTpTs
其中 T s T_s Ts指的是最优串行算法运行时间, p p p指的是并行进程数目。

加速比

并行算法比串行算法快的倍数。

S = T s T p S=\frac{T_s}{T_p} S=TpTs

一般情况下 1 ≤ S ≤ p 1 \leq S \leq p 1Sp,这是因为并行算法一般比串行算法要快,但是会有一些额外开销。
但是 S ≥ p S \geq{p} Sp也是可能出现的,可能原因是硬件条件不利于串行算法。

效率

度量有效计算时间。
E = S p = T s c o s t E=\frac{S}{p}=\frac{T_s}{cost} E=pS=costTs
理想情况下是1。

代价cost

c o s t = p T p cost=pT_p cost=pTp
代价也称作工作量,处理器时间积。
代价最优,即最优串行算法运算时间与代价近似相等,即p趋近于1,即 E = O ( 1 ) E=O(1) E=O(1)

可扩展性

  • 算法的强可扩展性定义:算法的效率恒定,或效率不随着线程数的增大而降低,那
    么称程序是可扩展的。
    算法的弱可扩展性定义:问题规模以一定速率增大,效率不随着线程数的增大而
    降低,则认为程序是可扩展的。
  • 度量并行体系结构在不同系统规模下的并行处理能力,利用系统规模和问题规模已知的并行系统性能来预测规模增大后的性能
    1. 在并行线程数 p p p一定的情况下,随着 n n n的增大, S 、 E S、E SE逐渐增大并且趋向于饱和。
      这可能是因为随着 n n n的增大,额外开销相对减小。
    2. n n n(问题规模)一定的情况下,随着 p p p的增大,额外开销增大, S S S趋向于饱和, E E E减小。
      证明: E = S p = T s p T p = T s T o + T s = 1 T o T s + 1 E=\frac{S}{p}=\frac{T_s}{pT_p}=\frac{T_s}{T_o+T_s}=\frac{1}{\frac{T_o}{T_s}+1} E=pS=pTpTs=To+TsTs=TsTo+11
  • 为了保持效率不变,问题规模与处理器数量的增长比率度量了系统的可扩展性,越慢,越好。
  • 问题规模:最佳串行算法在单处理单元求解问题所需基本运算步骤数目。如果设定一个基本操作需要一个单位时间,那么 T s = W T_s=W Ts=W
  • 因此,效率可以表示为问题规模和线程数的函数。推导过程如下:
    T p = T o + T s p = T o ( W , p ) + W p T_p=\frac{T_o+T_s}{p}=\frac{T_o(W, p)+W}{p} Tp=pTo+Ts=pTo(W,p)+W
    S = T s T p = W p T o ( W , p ) + W S=\frac{T_s}{T_p}=\frac{Wp}{T_o(W,p)+W} S=TpTs=To(W,p)+WWp
    E = S p = W T o ( W , p ) + W = 1 T o ( W , p ) / W + 1 E=\frac{S}{p}=\frac{W}{T_o(W,p)+W}=\frac{1}{T_o(W,p)/W+1} E=pS=To(W,p)+WW=To(W,p)/W+11
    分析:
    W W W不变, p p p增加, T o T_o To增加,因此 E E E减少。
    p p p不变, W W W增加, T o T_o To增加比 W W W要慢,因此 E E E增加。
    可以通过同时增加 W 、 p W、p Wp,使得效率保持不变。
  • 等效率函数: W = K T o ( W , p ) W=KT_o(W,p) W=KTo(W,p)
    较小——较小的问题规模即可充分利用较多的处理器的计算能力,强/高可扩展性
    较大——弱/低可扩展性

这篇关于并行算法的设计与分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217211

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类