在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后)

本文主要是介绍在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

步骤:   由于任意两个皇后不能同行,及每一行只能放置一个皇后,因此将第i个皇后放置在第i行中。这样在放置第i个皇后时,只要考虑他与前i-1个皇后处于不同列和不同对角线位置即可。

程序中设计了3个函数:

1.函数Check()用来判断皇后所放位置(row,column)是否可行

2.函数Output()用来输出可行解,及输出棋盘

3.函数EightQueen()采用递归算法实现在row行放置皇后

算法分析:

对于八皇后求解可采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。

程序流程图:

 

/*author:雷桂艺
time:2021年12月6日16:23
version:1.0
description:每一行只能放置一个皇后,因此将第i个皇后放置在第i行中。这样在放置第i个皇后时,只要考虑他与前i-1个皇后处于不同列和不同对角线位置即可。、对于八皇后求解可采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。程序中设计了3个函数:1.	函数Check()用来判断皇后所放位置(row,column)是否可行2.	函数Output()用来输出可行解,及输出棋盘3.	函数EightQueen()采用递归算法实现在row行放置皇后
*/#include <stdio.h>
#include <stdlib.h>
typedef int BOOL;
#define ture 1;
#define false 0;
int num = 0;
char m[8][8] = { '*' };
//m[8][8]表示棋盘,初始为*,表示未放置皇后//检查在第row行,第column列放置一枚皇后是否可行
BOOL Check(int row, int column)
{int i, j;if (row == 1){return ture;}for (i = 0; i <= row - 2; i++)//每一列只能有一个皇后{if (m[i][column - 1] == 'Q'){return false;}}//左上至右下只能有一个皇后i = row - 2;j = i - (row - column);while (i >=0 && j >= 0){if (m[i][j] == 'Q') return false;i--;j--;}//右上至左下只能有一枚皇后i = row - 2;j = row + column - i - 2;while (i >= 0 && j <= 7){if (m[i][j] == 'Q') return false;i--;j++;}return ture;
}//当为可行解时,输出棋盘
void Output()
{int i, j;num++;printf("可行解 %d:\n", num);for (i = 0; i < 8; i++){for (j = 0; j < 8; j++){printf(" %c", m[i][j]);}printf("\n");}
}//采用递归函数实现八皇后的回溯算法
//求解当棋盘前row-1行已放置好皇后,在第row行放置皇后
void EightQueen(int row)
{int j;for (j = 0; j < 8; j++){m[row - 1][j] = 'Q';if (Check(row, j + 1) == true){if (row == 8) Output();else EightQueen(row+1);}m[row - 1][j] = '*';}
}void main()
{EightQueen(1);
}

n皇后

算法分析:

对于N皇后求解仍采用回溯算法,从上之下依次在每一行放置皇后,进行搜索,若在某一行的任意一列放置皇后均不能满足要求,则不再向下搜索,而进行回溯,回溯至其他列可放置皇后的一行,再向下搜索,直到搜索至最后一行,找到可行解输出结果。

但与八皇后问题相比,n皇后问题的难点在与:8皇后由于提前确定了皇后的数量以及棋盘的大小,所以可以在程序中直接开辟好确定的棋盘空间;但n皇后的个数需要从键盘中输入,无法开辟动态的全局变量,只能先开辟一块足够大的存储空间,然后将键盘输入的皇后数量以及棋盘大小通过传参的方式传入函数中,在输出时只输出对应大小的棋盘

程序流程图:

 

#include <stdio.h>
#include <stdlib.h>typedef int BOOL;
#define ture 1;
#define false 0;
int num = 0;
char p[100][100] = {'*'};//首先要开辟一个足够大的棋盘//检查在第row行,第column列放置一枚皇后是否可行
BOOL Check(int row, int column,int number)
{int i, j;if (row == 1){return ture;}for (i = 0; i <= row - 2; i++)//每一列只能有一个皇后{if (p[i][column - 1] == 'Q'){return false;}}//左上至右下只能有一个皇后i = row - 2;j = i - (row - column);while (i >= 0 && j >= 0){if (p[i][j] == 'Q') return false;i--;j--;}//右上至左下只能有一枚皇后i = row - 2;j = row + column - i - 2;while (i >= 0 && j <= number-1){if (p[i][j] == 'Q') return false;i--;j++;}return ture;
}//当为可行解时,输出棋盘
void Output(int number)
{int i, j;num++;printf("可行解 %d:\n", num);for (i = 0; i <number; i++){for (j = 0; j < number; j++){printf(" %c", p[i][j]);}printf("\n");}
}//采用递归函数实现八皇后的回溯算法
//求解当棋盘前row-1行已放置好皇后,在第row行放置皇后
void Queen(int row,int number)
{int j;for (j = 0; j < number; j++){p[row - 1][j] = 'Q';if (Check(row, j + 1,number) == true){if (row == number) Output(number);else Queen(row + 1,number);}p[row - 1][j] = '*';}
}void main()
{int number;printf("输入皇后数量(<=100):\n");scanf("%d", &number);printf("输出最终结果:\n");Queen(1,number);
}

这篇关于在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”其他一个皇后,即任意两个皇后都不能处于同一行,同一列或同一条对角线上这样的格局称为问题的一个解。(后面有n*n皇后)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/216213

相关文章

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决