redis原理之布隆过滤器(Bloom Filter)

2023-10-15 07:10

本文主要是介绍redis原理之布隆过滤器(Bloom Filter),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Redis现网常见问题解决

1.1、缓存穿透——常见于不规范的key

概念:访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量大时DB会挂掉。

解决方案:

  • 采用布隆过滤器(Bloom Filter,Redis自带),使用一个足够大的bitmap,用于存储可能访问的key,不存在的key直接被过滤;(推荐)
  • 或者访问key未在DB查询到值,也将空值写进缓存,但可以设置较短过期时间。

1.2、缓存雪崩——常见于大量的key设置相同过期时间

概念:大量的key设置了相同的过期时间,导致在缓存在同一时刻全部失效,造成瞬时DB请求量大、压力骤增,引起雪崩。

解决方案:可以给缓存设置过期时间时加上一个随机值时间,使得每个key的过期时间分布开来,不会集中在同一时刻失效。

1.3、缓存击穿——常见于热点key

概念:一个存在的key,在缓存过期的一刻,同时有大量的请求,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。

解决方案:在访问key之前,采用SETNX(set if not exists)来设置另一个短期key来锁住当前key的访问,访问结束再删除该短期key。
 

二、布隆(bloom)过滤器原理

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难

从简单的定义可以看出,使用布隆过滤器目的是为了优化元素查找的性能,不过布隆过滤器提升的是得到 这个元素(key)的存在性的性能。

既然要解决上面的问题,那么我们就需要做存在性检查。

对于广大程序员来说,“判断一个值是否存在”这么一个问题,可能新手会说遍历(数组),老手们会直接抛下一句“哈希表呗”然后不屑的离开

 假设有这么一个场景:

如果给我们20亿条交易数据,而且会不断的增加,在每次访问缓存或者数据库之前做一个存在性检查,最直接想到的可能是类似hashtable这样的数据结构,去存储每个交易的key,每次有新的交易进来,就加入一条新的记录,容量不够就扩容,每次有查询进来,就做一次查找操作,这样的设计在数据越来越大的时候,占用的空间会越来越大,假设我们使用mysql的 varchar(36) 做uuid,每一条有36个字节(36byte),20亿条数据需要消耗的内存是:

即使用hash去压缩每一个key,这个容量一直增长的特点似乎也没有很好的办法去避免。

这时候布隆过滤器就上场了,那么布隆过滤器是怎么做的呢?

  1. 准备一个bit数组
  2. 准备k个hash函数,输入目标的key值和salt,输出一个int类型的hash值
  3. 每次有新的key值进入的时候,用这k个hash函数分别加密后得到k个hash值
  4. 对于第3步得到的每个hash值value,把bit数组中的第value个位赋值成1
  5. 每次有查询来的时候,对查询的目标也做k次hash得到k个value,如果k个value在bit数组中的值都是1,那么这个key的存在性就是true,如果有其中一个value的bit数组值不是1,存在性即为false
  6. 从上面的步骤可以知道,空间是可控的,假设是一个21亿多位长度的bit数组,理论上只有不到0.3Gb,时间和计算量也是可控的,但是取决于hash函数的效率

用一个简单的图形来解释,就是这样:

特别注意:布隆过滤器说存在的key,不一定真的存在。但是布隆过滤器说不存在的key是一定不存在的。

因为相同的hash函数输入相同的key,得出的hash值一定是相同的。所以,布隆过滤器有误差,误差的数学公式可以参考这个知乎答案,它跟bit数组的大小,k的大小,元素的数量都有关,但是一个容量足够大的通用布隆过滤器,一般可以达到几千万个元素的误差率在万分之几的数量级,具体可以参考github上一个C++的实现。

误差在这里是完全可以容忍的,本身布隆过滤器就是为了拦截大部分无效的访问,偶尔漏过去几条是完全没问题的。

三、简单Java实现

  • 这里从网上找了一个简单的java实现,为了学习和理解,并非是通用的过滤器。
  • hardcode了k的值为9,每个salt是一个素数,用于计算字符串的hash,bit数组的容量为0x7fffffff - 2.
  • 这里使用的hash函数也并非是高性能,如果在真实场景可以使用MurmurHash或者Fnv算法。
package www.lxk.com;public class BloomFilter {private static int[] salts = { 3, 5, 7, 11, 13, 17, 19, 23, 29 };// avoid VM errorprivate static boolean[] bitMap = new boolean[Integer.MAX_VALUE - 2];// refer to String.hashCode function// the salt/seed in JDK String class is 31, all the prime salt values less// then 31 could only generate Integer valuespublic static int myHash(String s, int salt) {if (s == null || s.isEmpty())throw new RuntimeException("empty string");int h = 0;for (int i = 0; i < s.length(); i++)h = salt * h + s.charAt(i);// to prevent negative valuesreturn Integer.MAX_VALUE & h;}public BloomFilter() {for (int i = 0; i < Integer.MAX_VALUE - 2; i++)bitMap[i] = false;}public boolean contains(String target) {if (target == null || target.isEmpty())return false;for (int salt : salts)if (!bitMap[myHash(target, salt)])return false;return true;}public void put(String target) {if (target == null || target.isEmpty())throw new RuntimeException("empty string");for (int salt : salts)bitMap[myHash(target, salt)] = true;}public static void main(String[] args) {BloomFilter b = new BloomFilter();for (int i = 0; i < 100000000; i++) {String s = "test" + i;b.put(s);}int count = 0;for (int i = 0; i < 100000000; i++) {String s = "test" + i;if (b.contains(s))count++;}System.out.println(count);count = 0;for (int i = 0; i < 200000000; i++) {String s = "test" + i;if (b.contains(s))count++;}System.out.println(count);}
}

这里的main函数做了一次简单的测试,往过滤器里面提前写入100000000(一亿)个不一样的字符串,再去查询0到一亿编号和二亿编号的字符串,其中一亿之前的应该都是存在的,从一亿到二亿的字符串应该是全都不存在的。

Output:


 
也就是说有46个误差,不论跟一亿还是二亿的基数比,这很显然是可以接受的。

总结:其实现实中Redis本身就有布隆过滤器的插件,可以直接配置使用,并不需要自己去实现,更需要关心的可能是不同数据规模下如何进行调优,Redis的布隆过滤器是可以制定error_rate的,一般来说指定的error_rate越小,需要的空间和计算量都会越大,需要通过一些性能测试去选择我们需要且可以接受的参数。

详细的信息和使用可以参考开源的redis bloom repo
 

参考:https://blog.csdn.net/weixin_37373020/article/details/99306145

这篇关于redis原理之布隆过滤器(Bloom Filter)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/216173

相关文章

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen