浅谈机器学习中的概率模型

2023-10-14 22:44

本文主要是介绍浅谈机器学习中的概率模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浅谈机器学习中的概率模型

其实,当牵扯到概率的时候,一切问题都会变的及其复杂,比如我们监督学习任务中,对于一个分类任务,我们经常是在解决这样一个问题,比如对于一个n维的样本 X = [ x 1 , x 2 , . . . . . x n ] X=[x_1,x_2,.....x_n] X=[x1,x2,.....xn],我们想知道它的类别,这个时候我们可以采用概率模型,比如贝叶斯模型,但是,我们知道样本 X X X属于什么类别,可能跟他的所有特征有关,同时,他的所有特征可能又存在着及其复杂的联系,所以如果我们真的考虑特征之间各种复杂的关系,在计算P(y|X)这个概率时往往很困难,因为我们在求解这样的一个概率模型时,还需要考虑样本特征之间的及其复杂的联系。
所以,我们所采用的方法往往是假设样本特征之间是独立的,这样,去求解我们的问题。而且往往这样的做法有时候也可以有着不错的效果。
之所以会有这样的原因,是因为比如两个特征之间有着正相关或者负相关的关系,那么通过上面的方法,虽然没有考虑特征之间的关系,但是特征对于样本分类的影响还是会很大程度的考虑其中,所以,往往我们假设特征之间是独立的,去进行建模往往也可以取得很好的成绩,因为在建模的时候,特征之间的相关性对于样本分类的影响,会被考虑到。
还一种在概率论中的处理在马尔可夫模型中可以体现,其在考虑一个序列之间的关系时,只考虑相邻的。
在博主看来,我们去进行一些概率计算的简化时,需要考虑是否这种简化对于我们的任务有着较大的影响,我们的模型是否在建模的时候,即使由于概率计算的简化导致信息流失,但是模型可以很大程度,去弥补这种信息流失。
我举一个很好的例子:

比如一个人 w-体重 70kg h-身高180cm f-颜值打分90 s-形象打分95 现在根据这个四个值去探讨这个人是否被一个陌生人习惯的概率
我们知道 身高 颜值打分 形象打分 这三个数值明显是有关系的,身高会影响形象打分,颜值也会影响形象打分,那假设这四个特征独立,其实并不影响我们的建模,比如一个人最终被人喜欢的打分模型为(理想的打分模型):
P=0.1w+h+1.4f+z

因为有一个潜在的关系: s=0.4h+0.6f+z,z为其他影响变量
那其实这个模型仍然是线性的,对于这个一个线性的模型,我们的模型仍然是可以学习到的。
比如:
我们可能会学习到这样的模型:
P=0.1w+0.6h+0.8f+s

这个模型其实和理想模型是等价的,是不是,其实 s h f 之间的相关性并没有影响我们求解出最好的模型。

但是这是在相关性比较简单的情况下可行,如果较为复杂,我们的模型也需要足够灵活,能够在模型中考虑到特征之间的相关性。

这篇关于浅谈机器学习中的概率模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/213645

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

浅谈Redis Key 命名规范文档

《浅谈RedisKey命名规范文档》本文介绍了Redis键名命名规范,包括命名格式、具体规范、数据类型扩展命名、时间敏感型键名、规范总结以及实际应用示例,感兴趣的可以了解一下... 目录1. 命名格式格式模板:示例:2. 具体规范2.1 小写命名2.2 使用冒号分隔层级2.3 标识符命名3. 数据类型扩展命

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、