【数据结构】判别以邻接表方式存储的有向图是否存在顶点Vi到Vj的路径

本文主要是介绍【数据结构】判别以邻接表方式存储的有向图是否存在顶点Vi到Vj的路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

分别采用了深度优先算法和广度优先算法实现

运行截图

在这里插入图片描述

代码实现:

import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;/*** Created by IntelliJ IDEA** @author manzuo* @date 2018/12/14 23:52* 以邻接表的作为存储方式,分别以广度优先和深度优先的算法判别有向图G是否存在顶点Vi到定点Vj的路径*/
public class AdjacencyList {public static void main(String[] args) {Scanner in  = new Scanner(System.in);CreateGraph createGraph = new CreateGraph();createGraph.initGraph();createGraph.outputGraph();int i,j;System.out.println("输入i,j 的值");i = in.nextInt();j = in.nextInt();createGraph.DFSTravel(i,j);createGraph.BFSTravel(i,j);}
}
class Vertex{ //顶点类String vername;//顶点的名称Vertex nextNode;//下一个顶点
}
class Graph{ //图类Vertex[] vertices;//顶点数组,存放所有顶点int verNum = 0;//顶点数量int edgeNum = 0;//边的数量
}
class CreateGraph{Scanner in = new Scanner(System.in);static private Graph graph = new Graph();//创建一个没有顶点的空图static private boolean[] visited;//遍历辅助数组,标记该顶点是否访问过static private boolean flag;//标记是否有Vi到Vj的路径public Vertex getVertex(String str){//根据指定的顶点名称str,返回对应的顶点对象//如果顶点不存在,返回nullfor(int i = 1;i<=graph.verNum;i++){if(graph.vertices[i].vername.equals(str))return  graph.vertices[i];}return  null;}public  int find(Vertex node){//在顶点数组里找到对应的顶点,并返回该顶点在数组中的位置for (int i =1;i<=graph.vertices.length;i++)if (graph.vertices[i].vername.equals(node.vername)==true)return i;return -1;}public void initGraph(){//根据键盘输入的数据,构建具体的图System.out.println("输入顶点的数量");graph.verNum = in.nextInt(); //获得顶点的数量graph.vertices = new Vertex[graph.verNum+1];//动态建立顶点数组,vertices[0]不用visited = new boolean[graph.verNum+1];//动态建立遍历辅助数组System.out.println("输入弧的数量");graph.edgeNum = in.nextInt();//获得弧的数量System.out.println("请输入各个顶点的名称:");for (int i=1;i<=graph.verNum;i++){//从键盘读取各个顶点的名称,构建顶点数组Vertex vertex = new Vertex(); //新建一个顶点类对象vertex.vername = in.next();//获取顶点的名称vertex.nextNode = null;//该顶点指向的下一个顶点(即各顶点之间的弧)设为nullgraph.vertices[i] = vertex;}System.out.println("请依次输入有向图的各条弧的两个顶点的名称:");for (int i=1;i<=graph.edgeNum;i++) {//构建邻接表String v1 = in.next(); //读取的两个顶点的名称String v2 = in.next();Vertex vertex1 = getVertex(v1);//根据两个顶点的名称在顶点数组里找到对应的顶点Vertex vertex2 = getVertex(v2);if (vertex1 == null) { //检查是否输入错误//输入的顶点名称不存在System.out.println(v1 + "不是图中的一个顶点,请重新输入");i--;continue;//} else if (vertex2 == null) {System.out.println(v2 + "不是图中的一个顶点,请重新输入");i--;continue;} else {//输入正确的情况下,//新建顶点,并插入到邻接表中Vertex newVex = new Vertex();//新建一个顶点newVex.vername = vertex2.vername;//把新建的顶点名称设置为弧头顶点的名称//把新顶点插到弧尾顶点之后newVex.nextNode = vertex1.nextNode;vertex1.nextNode = newVex;}}}public void outputGraph(){ //输出图的邻接链表System.out.println("输入的有向图图的邻接链表为:");for(int i=1;i<=graph.verNum;i++){//依次遍历每个顶点Vertex vertex=graph.vertices[i];System.out.print(vertex.vername);//打印当前顶点的名称Vertex current=vertex.nextNode;//读取下一个顶点while(current!=null){ //如果存在下一个顶点System.out.print("-->"+current.vername);current=current.nextNode;}System.out.println();}}public void DFS(int i,int j){//深度搜索int w;for (Vertex current = graph.vertices[i];current!=null;current = current.nextNode){if (flag) //flag = truereturn;w = find(current);//当前顶点在顶点数组中位置if(!visited[w]){//当前顶点没有访问过visited[w]=true;if (w==j)//w==j的时候,代表存在有Vi到Vj的路径flag=true;else  //还没找到DFS(w,j);//尝试从Vw到Vj的路径}}}public void DFSTravel(int i,int j){//深搜辅助函数if (i==j)System.out.println("参数错误,i不能等于j");for (int v=1;v <=graph.verNum;v++)//将visited重置visited[v]=false;visited[i]=true;//i位置已经访问flag = false;//全局变量,标记Vi到Vj之间是否存在路径DFS(i,j);System.out.println("广度搜索:");if (flag)System.out.println(graph.vertices[i].vername+"到"+graph.vertices[j].vername+"之间存在路径");elseSystem.out.println(graph.vertices[i].vername+"到"+graph.vertices[j].vername+"之间不存在路径");}public void BFS(int i,int j){ //广度搜索Queue<Integer> queue = new LinkedList<>();//辅助队列,放置访问过的结点的位置queue.offer(i);//将v放入队列中int w;while (!queue.isEmpty()){i = queue.poll();//出队for (Vertex current = graph.vertices[i];current!=null;current = current.nextNode){w = find(current);if (!visited[w]){visited[w]=true;if (w==j){flag = true;return;}queue.offer(w);}}}}public void BFSTravel(int i,int j){//广度搜索辅助函数if (i==j)System.out.println("参数错误,i不能等于j");for (int v=1;v <=graph.verNum;v++)//将visited重置visited[v]=false;visited[i]=true;//i位置已经访问flag = false;//全局变量,标记Vi到Vj之间是否存在路径System.out.println("广度搜索:");BFS(i,j);if (flag)System.out.println(graph.vertices[i].vername+"到"+graph.vertices[j].vername+"之间存在路径");elseSystem.out.println(graph.vertices[i].vername+"到"+graph.vertices[j].vername+"之间不存在路径");}
}

这篇关于【数据结构】判别以邻接表方式存储的有向图是否存在顶点Vi到Vj的路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213624

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.