Opencv python: seamlessClone泊松融合 (我把Lena变成了彼岸花怪/(ㄒoㄒ)/~~)

2023-10-14 17:20

本文主要是介绍Opencv python: seamlessClone泊松融合 (我把Lena变成了彼岸花怪/(ㄒoㄒ)/~~),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要进行融合呢?原因是LZ在进行贴图操作的时候,经常会出现很明显的边界效应,在各种查找资料的情况下,找到了一种比较适合图像融合的方法,并且OpenCV有对应的接口,所以就网上下了图片,做了一些尝试,当然最后并没有使用这个函数是因为贴图效果太不明显了,LZ甚至以为是自己代码写错了,所以这个函数因人而异。

首先这个函数的用法:

def seamlessClone(src, dst, mask, p, flags, blend=None): # real signature unknown; restored from __doc__"""seamlessClone(src, dst, mask, p, flags[, blend]) -> blend.   @brief Image editing tasks concern either global changes (color/intensity corrections, filters,.   deformations) or local changes concerned to a selection. Here we are interested in achieving local.   changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless.   manner. The extent of the changes ranges from slight distortions to complete replacement by novel.   content @cite PM03 ..   .   @param src Input 8-bit 3-channel image..   @param dst Input 8-bit 3-channel image..   @param mask Input 8-bit 1 or 3-channel image..   @param p Point in dst image where object is placed..   @param blend Output image with the same size and type as dst..   @param flags Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER"""pass

NORMAL_CLONE
Python: cv.NORMAL_CLONE
The power of the method is fully expressed when inserting objects with complex outlines into a new background
将具有复杂轮廓的对象插入新背景,也就是说不保留dst 图像的texture细节,目标区域的梯度只由源图像决定。

MIXED_CLONE
Python: cv.MIXED_CLONE

The classic method, color-based selection and alpha masking might be time consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the original image, is not effective. Mixed seamless cloning based on a loose selection proves effective.
基于宽松选择的混合无缝克隆,保留des图像的texture 细节。目标区域的梯度是由原图像和目的图像的组合计算出来(计算dominat gradient)。

MONOCHROME_TRANSFER
Python: cv.MONOCHROME_TRANSFER
Monochrome transfer allows the user to easily replace certain features of one object by alternative features.
不保留src图像的颜色细节,只有src图像的质地,颜色和目标图像一样,可以用来进行皮肤质地填充(美颜是不是可以用呢?)

import cv2 
import numpy as np# read our test imges
img1 = cv2.imread("../test_imgs/lena_standard.jpg")
img2 = cv2.imread("../test_imgs/beiji.jpeg")
cv2.imshow("img1", img1)
cv2.imshow("img2", img2)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

# create an white mask
mask = 255*np.ones(img1.shape, img1.dtype)
# the location of the src in the dst
width, height, channel = img2.shape
center = (int(height/2), int(width/2))
normal_clone = cv2.seamlessClone(img1, img2, mask, center, cv2.NORMAL_CLONE)
cv2.imshow("normal_clone", normal_clone)
cv2.waitKey()

在这里插入图片描述

mixed_clone = cv2.seamlessClone(img1, img2, mask, center, cv2.MIXED_CLONE)
cv2.imshow("mixed_clone", mixed_clone)
cv2.waitKey()
# cv2.destroyAllWindows()

在这里插入图片描述

mono_clone = cv2.seamlessClone(img1, img2, mask, center, cv2.MONOCHROME_TRANSFER)
cv2.imshow("mono_clone", mono_clone)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
额,测试图片感觉没选好,融合起来感觉哪里怪怪的/(ㄒoㄒ)/~~

#这段代码写的可随意了,就是生成一个mask,做一个融合
img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)    
ret, binary = cv2.threshold(img1_gray, 100, 255, cv2.THRESH_BINARY | cv2.THRESH_TRIANGLE)contours, _ = cv2.findContours(binary,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# print("contour: ", contour)
src_mask = np.zeros(img1.shape, img1.dtype)area = []
want_area = []
for i in range(len(contours)):area.append(cv2.contourArea(contours[i]))
area.sort()
for i in range(len(contours)):if (cv2.contourArea(contours[i]) < area[-1]):cv2.fillConvexPoly(src_mask, contours[i], 0)else:cv2.fillConvexPoly(src_mask, contours[i], (255,255, 255))
test_mask = src_mask[:,:,1]# print("mask_shape: ", mask_new.shape)
normal_clone_bin = cv2.seamlessClone(img1, img2, test_mask, center, cv2.NORMAL_CLONE)cv2.imshow("normal_clone_bin", normal_clone_bin)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

参考地址:

  1. https://www.jianshu.com/p/49adfbe4b804
  2. https://docs.opencv.org/3.4/df/da0/group__photo__clone.html

这篇关于Opencv python: seamlessClone泊松融合 (我把Lena变成了彼岸花怪/(ㄒoㄒ)/~~)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211972

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/