机器学习笔记 - EANet 外部注意论文简读及代码实现

2023-10-14 16:20

本文主要是介绍机器学习笔记 - EANet 外部注意论文简读及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、论文简述

 

        论文作者提出了一种新的轻量级注意力机制,称之为外部注意力。如图所示,计算自注意力需要首先通过计算自查询向量和自关键字向量之间的仿射关系来计算注意力图,然后通过用该注意力图加权自值向量来生成新的特征图。外部关注的作用不同。我们首先通过计算自查询向量和外部可学习密钥存储器之间的亲和力来计算注意力图,然后通过将该注意力图乘以另一个外部可学习值存储器来生成细化的特征图。

         在实践中,这两个存储器是用线性层实现的,因此可以通过端到端的反向传播来优化。它们独立于单个样本,并在整个数据集中共享,这起到了很强的正则化作用,提高了注意力机制的泛化能力。外部注意力的轻量级本质的关键在于,存储器中的元素数量远小于输入特征中的元素数目,从而产生输入中元素数目线性的计算复杂度。外部存储器旨在学习整个数据集中最具鉴别力的特征,捕捉信息量最大的部分,并排除其他样本中的干扰信息。类似的想法可以在稀疏编码[9]或字典学习中找到。然而,与这些方法不同的是,我们既没有尝试重建输入特征,也没有对注意力图应用任何显式稀疏正则化。

        尽管所提出的外部注意力方法很简单,但它对各种视觉任务都是有效的。由于其简单性,它可以很容易地融入现有流行的基于自注意的架构中,如DANet、SAGAN和T2T Transformer。图3展示了一个典型的架构,该架构将图像语义分割任务的自我注意力替换为外部注意力。我们使用不同的输入模式(图像和点云),对分类、对象检测、语义分割、实例分割和生成等基本视觉任务进行了广泛的实验。结果表明,我们的方法获得的结果与原始的自注意机制及其一些变体相当或更好,以低得多的计算成本。

使用我们提出的外部注意力进行语义分割的EANet架构。

二、相关参考代码

1、基于torch的实现

        外部注意力实现

import numpy as np
import torch
from torch import nn
from torch.nn import initclass ExternalAttention(nn.Module):def __init__(self, d_model,S=64):super().__init__()self.mk=nn.Linear(d_model,S,bias=False)self.mv=nn.Linear(S,d_model,bias=False)self.softmax=nn.Softmax(dim=1)self.init_weights()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, queries):attn=self.mk(queries) #bs,n,Sattn=self.softmax(attn) #bs,n,Sattn=attn/torch.sum(attn,dim=2,keepdim=True) #bs,n,Sout=self.mv(attn) #bs,n,d_modelreturn outif __name__ == '__main__':input=torch.randn(50,49,512)ea = ExternalAttention(d_model=512,S=8)output=ea(input)print(output.shape)

        调用参考

input=torch.randn(50,49,512)
ea = ExternalAttention(d_model=512,S=8)
output=ea(input)
print(output.shape)

2、基于tensorflow的EANet实现

        EANet只是用外部注意力代替了Vit中的自我注意力。

        这里的数据集是采用cifar100数据集,首先加载划分数据集,然后配置超参数

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_addons as tfa
import matplotlib.pyplot as pltnum_classes = 100
input_shape = (32, 32, 3)(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")weight_decay = 0.0001
learning_rate = 0.001
label_smoothing = 0.1
validation_split = 0.2
batch_size = 128
num_epochs = 50
patch_size = 2  # Size of the patches to be extracted from the input images.
num_patches = (input_shape[0] // patch_size) ** 2  # Number of patch
embedding_dim = 64  # Number of hidden units.
mlp_dim = 64
dim_coefficient = 4
num_heads = 4
attention_dropout = 0.2
projection_dropout = 0.2
num_transformer_blocks = 8  # Number of repetitions of the transformer layerprint(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")

        进行数据增强

data_augmentation = keras.Sequential([layers.Normalization(),layers.RandomFlip("horizontal"),layers.RandomRotation(factor=0.1),layers.RandomContrast(factor=0.1),layers.RandomZoom(height_factor=0.2, width_factor=0.2),],name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)

        实现补丁提取和编码层‘

class PatchExtract(layers.Layer):def __init__(self, patch_size, **kwargs):super().__init__(**kwargs)self.patch_size = patch_sizedef call(self, images):batch_size = tf.shape(images)[0]patches = tf.image.extract_patches(images=images,sizes=(1, self.patch_size, self.patch_size, 1),strides=(1, self.patch_size, self.patch_size, 1),rates=(1, 1, 1, 1),padding="VALID",)patch_dim = patches.shape[-1]patch_num = patches.shape[1]return tf.reshape(patches, (batch_size, patch_num * patch_num, patch_dim))class PatchEmbedding(layers.Layer):def __init__(self, num_patch, embed_dim, **kwargs):super().__init__(**kwargs)self.num_patch = num_patchself.proj = layers.Dense(embed_dim)self.pos_embed = layers.Embedding(input_dim=num_patch, output_dim=embed_dim)def call(self, patch):pos = tf.range(start=0, limit=self.num_patch, delta=1)return self.proj(patch) + self.pos_embed(pos)

        实现外部注意力块

def external_attention(x, dim, num_heads, dim_coefficient=4, attention_dropout=0, projection_dropout=0
):_, num_patch, channel = x.shapeassert dim % num_heads == 0num_heads = num_heads * dim_coefficientx = layers.Dense(dim * dim_coefficient)(x)# create tensor [batch_size, num_patches, num_heads, dim*dim_coefficient//num_heads]x = tf.reshape(x, shape=(-1, num_patch, num_heads, dim * dim_coefficient // num_heads))x = tf.transpose(x, perm=[0, 2, 1, 3])# a linear layer M_kattn = layers.Dense(dim // dim_coefficient)(x)# normalize attention mapattn = layers.Softmax(axis=2)(attn)# dobule-normalizationattn = attn / (1e-9 + tf.reduce_sum(attn, axis=-1, keepdims=True))attn = layers.Dropout(attention_dropout)(attn)# a linear layer M_vx = layers.Dense(dim * dim_coefficient // num_heads)(attn)x = tf.transpose(x, perm=[0, 2, 1, 3])x = tf.reshape(x, [-1, num_patch, dim * dim_coefficient])# a linear layer to project original dimx = layers.Dense(dim)(x)x = layers.Dropout(projection_dropout)(x)return x

        实施 MLP

def mlp(x, embedding_dim, mlp_dim, drop_rate=0.2):x = layers.Dense(mlp_dim, activation=tf.nn.gelu)(x)x = layers.Dropout(drop_rate)(x)x = layers.Dense(embedding_dim)(x)x = layers.Dropout(drop_rate)(x)return x

        实现变压器模块,基于参数配置选择外部注意或是自我关注。

def transformer_encoder(x,embedding_dim,mlp_dim,num_heads,dim_coefficient,attention_dropout,projection_dropout,attention_type="external_attention",
):residual_1 = xx = layers.LayerNormalization(epsilon=1e-5)(x)if attention_type == "external_attention":x = external_attention(x,embedding_dim,num_heads,dim_coefficient,attention_dropout,projection_dropout,)elif attention_type == "self_attention":x = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embedding_dim, dropout=attention_dropout)(x, x)x = layers.add([x, residual_1])residual_2 = xx = layers.LayerNormalization(epsilon=1e-5)(x)x = mlp(x, embedding_dim, mlp_dim)x = layers.add([x, residual_2])return x

        实施 EANet 模型

def get_model(attention_type="external_attention"):inputs = layers.Input(shape=input_shape)# Image augmentx = data_augmentation(inputs)# Extract patches.x = PatchExtract(patch_size)(x)# Create patch embedding.x = PatchEmbedding(num_patches, embedding_dim)(x)# Create Transformer block.for _ in range(num_transformer_blocks):x = transformer_encoder(x,embedding_dim,mlp_dim,num_heads,dim_coefficient,attention_dropout,projection_dropout,attention_type,)x = layers.GlobalAvgPool1D()(x)outputs = layers.Dense(num_classes, activation="softmax")(x)model = keras.Model(inputs=inputs, outputs=outputs)return model

        进行训练并可视化

model = get_model(attention_type="external_attention")model.compile(loss=keras.losses.CategoricalCrossentropy(label_smoothing=label_smoothing),optimizer=tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay),metrics=[keras.metrics.CategoricalAccuracy(name="accuracy"),keras.metrics.TopKCategoricalAccuracy(5, name="top-5-accuracy"),],
)history = model.fit(x_train,y_train,batch_size=batch_size,epochs=num_epochs,validation_split=validation_split,
)model.save('eanet_cifar100.h5')

plt.plot(history.history["loss"], label="train_loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Train and Validation Losses Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()

         进行验证

loss, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
print(f"Test loss: {round(loss, 2)}")
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")

三、相关参考

arxiv.org/pdf/2105.02358.pdfhttps://arxiv.org/pdf/2105.02358.pdfExternal-Attention-pytorch/ExternalAttention.py at master · xmu-xiaoma666/External-Attention-pytorch · GitHubhttps://github.com/xmu-xiaoma666/External-Attention-pytorch/blob/master/model/attention/ExternalAttention.py

这篇关于机器学习笔记 - EANet 外部注意论文简读及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211690

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、