改进YOLOv5:添加EMA注意力机制

2023-10-14 16:20

本文主要是介绍改进YOLOv5:添加EMA注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 新建EMA.py文件
  • 修改yolo.py文件
    • 1.导入EMA.py
    • 2.修改parse_model
  • 修改yaml文件(yolov5s为例)
  • 参考


前言

本文主要介绍一种在YOLOv5-7.0中添加EMA注意力机制的方法。EMA注意力机制原论文地址,有关EMA注意力机制的解读可参考文章。

新建EMA.py文件

在yolov5的models文件中新建一个名为EMA.py文件,将下述代码复制到EMA.py文件中并保存。

import torch
from torch import nnclass EMA(nn.Module):def __init__(self, channels, factor=8):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)

修改yolo.py文件

1.导入EMA.py

在yolo.py文件开头导入EMA.py,代码如下:

from models.EMA import EMA

代码放在yolo.py位置如下图所示:
在这里插入图片描述

2.修改parse_model

这里主要是添加通道参数,再添加一个elif,把EMA添加进去,代码如下:

 elif m is EMA:   args = [ch[f], *args]

添加上述代码的位置可参考下图:
在这里插入图片描述


修改yaml文件(yolov5s为例)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, EMA, [8]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 15], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

上述代码将EMA注意力机制模块加在backbone层中最后C3模块后面,SPPF模块前面,仅供参考,具体添加位置要根据个人数据集的不同合理的添加。

[-1, 1, EMA, [8]], #-1代表连接上一层通道数,1是个数,8是EMA所需的参数(factor=8)

说明:因为在yolo.py文件parse_model函数中修改了通道参数,因此在yaml文件中无需添加通道参数,只需添加EMA函数所需的其他参数。在backbone中添加一层注意力机制模块,因此后续的层数都要加一,在head层中做如下改动。

[[-1, 15], 1, Concat, [1]],  #未改动前的第14层,在经过上述改动后改为15
[[-1, 11], 1, Concat, [1]],  #未改动前的第10层,在记过上述改动后改为11
[[18, 21, 24], 1, Detect, [nc, anchors]],  #17,20,23层改为18,21,24

运行train.py文件可以在输出终端窗口看到上图网络结构,可以看到在第9层已经成功添加EMA注意力机制模块。

                from  n    params  module                                  arguments                     0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                2                -1  1     18816  models.common.C3                        [64, 64, 1]                   3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               4                -1  2    115712  models.common.C3                        [128, 128, 2]                 5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              6                -1  3    625152  models.common.C3                        [256, 256, 3]                 7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 9                -1  1     41216  models.EMA.EMA                          [512, 8]                      10                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          13           [-1, 6]  1         0  models.common.Concat                    [1]                           14                -1  1    361984  models.common.C3                        [512, 256, 1, False]          15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          17           [-1, 4]  1         0  models.common.Concat                    [1]                           18                -1  1     90880  models.common.C3                        [256, 128, 1, False]          19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              20          [-1, 15]  1         0  models.common.Concat                    [1]                           21                -1  1    296448  models.common.C3                        [256, 256, 1, False]          22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              23          [-1, 11]  1         0  models.common.Concat                    [1]                           24                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          25      [18, 21, 24]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5sEMA summary: 222 layers, 7063542 parameters, 7063542 gradients, 16.2 GFLOPs

参考

https://www.bilibili.com/video/BV1s84y1775U/?spm_id_from=333.788&vd_source=f83457e2adc10b543ae4c742fba1e3b2
https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/131347981

这篇关于改进YOLOv5:添加EMA注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211676

相关文章

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Java 的 Condition 接口与等待通知机制详解

《Java的Condition接口与等待通知机制详解》在Java并发编程里,实现线程间的协作与同步是极为关键的任务,本文将深入探究Condition接口及其背后的等待通知机制,感兴趣的朋友一起看... 目录一、引言二、Condition 接口概述2.1 基本概念2.2 与 Object 类等待通知方法的区别

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4