改进YOLOv5:添加EMA注意力机制

2023-10-14 16:20

本文主要是介绍改进YOLOv5:添加EMA注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 新建EMA.py文件
  • 修改yolo.py文件
    • 1.导入EMA.py
    • 2.修改parse_model
  • 修改yaml文件(yolov5s为例)
  • 参考


前言

本文主要介绍一种在YOLOv5-7.0中添加EMA注意力机制的方法。EMA注意力机制原论文地址,有关EMA注意力机制的解读可参考文章。

新建EMA.py文件

在yolov5的models文件中新建一个名为EMA.py文件,将下述代码复制到EMA.py文件中并保存。

import torch
from torch import nnclass EMA(nn.Module):def __init__(self, channels, factor=8):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w)  # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)

修改yolo.py文件

1.导入EMA.py

在yolo.py文件开头导入EMA.py,代码如下:

from models.EMA import EMA

代码放在yolo.py位置如下图所示:
在这里插入图片描述

2.修改parse_model

这里主要是添加通道参数,再添加一个elif,把EMA添加进去,代码如下:

 elif m is EMA:   args = [ch[f], *args]

添加上述代码的位置可参考下图:
在这里插入图片描述


修改yaml文件(yolov5s为例)

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, EMA, [8]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 15], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

上述代码将EMA注意力机制模块加在backbone层中最后C3模块后面,SPPF模块前面,仅供参考,具体添加位置要根据个人数据集的不同合理的添加。

[-1, 1, EMA, [8]], #-1代表连接上一层通道数,1是个数,8是EMA所需的参数(factor=8)

说明:因为在yolo.py文件parse_model函数中修改了通道参数,因此在yaml文件中无需添加通道参数,只需添加EMA函数所需的其他参数。在backbone中添加一层注意力机制模块,因此后续的层数都要加一,在head层中做如下改动。

[[-1, 15], 1, Concat, [1]],  #未改动前的第14层,在经过上述改动后改为15
[[-1, 11], 1, Concat, [1]],  #未改动前的第10层,在记过上述改动后改为11
[[18, 21, 24], 1, Detect, [nc, anchors]],  #17,20,23层改为18,21,24

运行train.py文件可以在输出终端窗口看到上图网络结构,可以看到在第9层已经成功添加EMA注意力机制模块。

                from  n    params  module                                  arguments                     0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                2                -1  1     18816  models.common.C3                        [64, 64, 1]                   3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               4                -1  2    115712  models.common.C3                        [128, 128, 2]                 5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              6                -1  3    625152  models.common.C3                        [256, 256, 3]                 7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 9                -1  1     41216  models.EMA.EMA                          [512, 8]                      10                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          13           [-1, 6]  1         0  models.common.Concat                    [1]                           14                -1  1    361984  models.common.C3                        [512, 256, 1, False]          15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          17           [-1, 4]  1         0  models.common.Concat                    [1]                           18                -1  1     90880  models.common.C3                        [256, 128, 1, False]          19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              20          [-1, 15]  1         0  models.common.Concat                    [1]                           21                -1  1    296448  models.common.C3                        [256, 256, 1, False]          22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              23          [-1, 11]  1         0  models.common.Concat                    [1]                           24                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          25      [18, 21, 24]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5sEMA summary: 222 layers, 7063542 parameters, 7063542 gradients, 16.2 GFLOPs

参考

https://www.bilibili.com/video/BV1s84y1775U/?spm_id_from=333.788&vd_source=f83457e2adc10b543ae4c742fba1e3b2
https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/131347981

这篇关于改进YOLOv5:添加EMA注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_43615485/article/details/131470922
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/211676

相关文章

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分