【量化交易笔记】5.SMA,EMA 和WMA区别

2023-10-14 16:20

本文主要是介绍【量化交易笔记】5.SMA,EMA 和WMA区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。

SMA 简单移动平均线(Simple Moving Average)

SMA是移动平均线的简称,全称是简单移动平均线(Simple Moving Average)。它是历史股价平均值的简单算术平均数。计算SMA,只需要将一段时间内股票收盘价的总和除以这段时间内的交易日数。

例如,计算过去5天的SMA,只需要将这5天的股票收盘价相加,再除以5,即可得出SMA。

SMA是一种较为简单的移动平均方式,经常被用于判断短期的股票趋势。由于SMA只是简单地考虑了过去一段时间的股票价格,因此它会被短期价格波动所影响,因此可能不如其他平均值算法准确。

EMA 指数移动平均线(Exponential Moving Average)

EMA是指数移动平均线(Exponential Moving Average)。与SMA不同,EMA并不是简单的日平均数,而是考虑到股票价格的整体趋势,即将较大的权重放在了最近的股票价格上。

在EMA的计算中,最近的股票价格会得到较高的权重,而较早的股票价格的权重则会下降。计算过程中需要指定EMA的时间周期,通常包括12天和26天等。

对于EMA的计算,需要先计算出一个起始的EMA值。这可以通过计算一段时间内的SMA来得到,然后用下面的计算公式去计算:

当前EMA值 = ((当前收盘价 - 上一个EMA值) * 平滑指数)+ 上一个EMA值
平滑指数可以通过下面的方法来计算:
平滑指数 = 2 /(时间周期 + 1)
EMA的计算方法相对于SMA更为复杂,但它可以更好地反映当前的市场趋势。
y t = x t + ( 1 − α ) x t − 1 + ( 1 − α ) 2 x t − 2 + . . . + ( 1 − α ) t x 0 1 + ( 1 − α ) + ( 1 − α ) 2 + . . . + ( 1 − α ) t y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} yt=1+(1α)+(1α)2+...+(1α)txt+(1α)xt1+(1α)2xt2+...+(1α)tx0
其中, t t t 为窗口大小, α \alpha α 为平滑因子( 0 < α ≤ 1 0 \lt \alpha \leq 1 0<α1 可根据公式计算,如 2 / ( 1 + t ) 2/(1+ t ) 2/(1+t),也可自定义), ( 1 − α ) i (1- \alpha) ^ i (1α)i 为呈指数增加的权重,期数离预测时刻越近权重越大。

y 0 = x 0 y t = ( 1 − α ) y t − 1 + α x t , \begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split} y0yt=x0=(1α)yt1+αxt,

# 直接用 Pandas 的ewm 函数
pandas.ewm(span=n)

WMA 加权移动平均线(Weighted Moving Average)

WMA是加权移动平均线(Weighted Moving Average),它是一种考虑过去时间内价格变化和波动的Moving Average方式。与EMA类似,WMA也是将较大的权重放在较近的数据上,但与EMA不同的是,它使用的是带权的平均算法。

在WMA中,每个数据都被通过给定的权重,然后再求和得到加权平均值。通常情况下,较近的数据会有较大的权重,而较远的数据权重会下降,WMA有助于平滑股票价格的波动,并根据相应的趋势给出合适的建议。

WMA的计算也需要指定一个时间周期,并且需要先计算出一段时间内的总权值,用下面的公式计算总权值后,再使用上面的加权平均公式计算WMA:

保存总权值 = 从 1 开始的周期数 * 周期内每个数据的权重之和
每个数据的权重 = (当前周期数 + 1)- 当前数据的位置
WMA是比SMA更为准确的一种移动平均计算方法,但它的计算也更为复杂。

W M A t ( n ) = w 1 x t + w 2 x t − 1 + . . . + w n − 1 x t − n + 2 + w n x t − n + 1 w 1 + w 2 + . . . + w n WMA_t(n) = \frac{w_1x_t + w_2x_{t-1} + ... + w_{n-1}x_{t-n+2} +w_nx_{t-n+1} }{w_1+w_2+ ... + w_n } WMAt(n)=w1+w2+...+wnw1xt+w2xt1+...+wn1xtn+2+wnxtn+1

其中, n n n为窗口大小, W M A t WMA_t WMAt为t时刻的移动平均值。

技术分析中,权重系数为n~0,即最近一个数值的权重为n,次近的为n-1,如此类推,直到0。
W M A t ( n ) = n x t + ( n − 1 ) x t − 1 + . . . + 2 x t − n + 2 + x t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA_t(n) = \frac{nx_t + (n-1)x_{t-1} + ... + 2x_{t-n+2} +x_{t-n+1} }{n+(n-1)+ ... + 2+1 } WMAt(n)=n+n1)+...+2+1nxt+(n1)xt1+...+2xtn+2+xtn+1

def WMA(close, n):weights = np.array(range(1, n+1))sum_weights = np.sum(weights)res = close.rolling(window=n).apply(lambda x: np.sum(weights*x) / sum_weights, raw=False)return res#或
def WMA(close, n):return close.rolling(window=n).apply(lambda x: x[::-1].cumsum().sum() * 2 / n / (n + 1))

方法对比分析

从权重思维来看,三种方法都可以认为是加权平均。SMA:权重系数一致;WMA:权重系数随时间间隔线性递减;EMA:权重系数随时间间隔指数递减。 如下图:
下面以 t=30 作图

WMA 是 线性递减,EMA是指数递减

结论

三种平均值算法各有优缺点,你需要根据你的股票市场分析需要及实际情况来决定使用哪种算法。如果你的分析需要考虑。EMA,WMA 即 远离当前时间,影响较小,前一天权重大影响最大。因此在股票很多指标上都用EMA 来代替SMA,如MACD等。

这篇关于【量化交易笔记】5.SMA,EMA 和WMA区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211673

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会