python实战之泰坦尼克号获救问题

2023-10-14 13:50

本文主要是介绍python实战之泰坦尼克号获救问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据来源:
Kaggle数据集 →
共有1309名乘客数据,其中891是已知存活情况(train.csv),剩下418则是需要进行分析预测的(test.csv)
字段意义:
PassengerId: 乘客编号
Survived :存活情况(存活:1 ; 死亡:0)
Pclass : 客舱等级
Name : 乘客姓名
Sex : 性别
Age : 年龄
SibSp : 同乘的兄弟姐妹/配偶数
Parch : 同乘的父母/小孩数
Ticket : 船票编号
Fare : 船票价格
Cabin :客舱号
Embarked : 登船港口
目的:通过已知获救数据,预测乘客生存情况研究问题:
1、整体来看,存活比例如何?
要求:① 读取已知生存数据train.csv② 查看已知存活数据中,存活比例如何?
提示:① 注意过程中筛选掉缺失值之后再分析② 这里用seaborn制图辅助研究
2、结合性别和年龄数据,分析幸存下来的人是哪些人?
要求:① 年龄数据的分布情况② 男性和女性存活情况③ 老人和小孩存活情况
3、结合 SibSp、Parch字段,研究亲人多少与存活的关系
要求:① 有无兄弟姐妹/父母子女和存活与否的关系② 亲戚多少与存活与否的关系
4、结合票的费用情况,研究票价和存活与否的关系
要求:① 票价分布和存活与否的关系② 比较研究生还者和未生还者的票价情况
5、利用KNN分类模型,对结果进行预测
要求:① 模型训练字段:‘Survived’,‘Pclass’,‘Sex’,‘Age’,‘Fare’,'Family_Size’②模型预测test.csv样本数据的生还率
提示:① 训练数据集中,性别改为数字表示 → 1代表男性,0代表女性

泰坦尼克号获救问题十分经典,比较初级,不过也很有练习价值。在这里我也简单记录一下自己的思路,小小分享,欢迎指正。
拿到问题,先打开数据看一看,了解一下大概情况以及分析目的。
前四问很简单,需要对数据进行描述、评判,最后一问是利用模型进行简单的预测。整体难度不高。

1 导入模块,加载数据

根据题目要求,预测需要的模块,也可以后期用到再加。然后导入数据,查看具体情况。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import timeimport warnings
warnings.filterwarnings('ignore')os.chdir('/Users/eleven/Desktop/python/泰坦尼克号获救问题/')
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')

2 查看存活比例

存活只有两个数据值,1和0,可以直接用饼状图来体现,简单直观。

sns.set()
sns.set_style('ticks')
plt.axis('equal')
survive_per = train_data['Survived'].value_counts()
survive_per.plot.pie(autopct = '%.2f%%')

用seaborn制图,设置为正方形的绘图空间,通过value_counts计数,生成pie饼状图
生成的饼状图
得到存活比例为38.38%。

3 分析幸存下来的人群分布

(1)年龄数据的分布情况

简单的看分布情况,可以用直方图和箱型图来表示。

train_data_age = train_data[train_data['Age'].notnull()]
#去除缺失值plt.figure(figsize = (12,6))
plt.subplot(121)
train_data_age['Age'].hist(bins = 70)
plt.xlabel('age')
plt.ylabel('num')
#绘制直方图plt.subplot(122)
train_data.boxplot(column = 'Age',showfliers = False)
#绘制箱型图train_data_age['Age'].describe()
#数据描述

这篇关于python实战之泰坦尼克号获救问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210948

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我