【论文阅读】REPLUG: Retrieval-Augmented Black-Box Language Models

2023-10-14 12:30

本文主要是介绍【论文阅读】REPLUG: Retrieval-Augmented Black-Box Language Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • REPLUG
    • REPLUG LSR: Training the Dense Retriever
      • Computing Retrieval Likelihood
      • Computing LM likelihood
    • Training Setup
      • Model
      • Training data
    • Results
      • Language Modeling
      • MMLU
      • Open Domain QA
    • Analysis

前言

  • 原文地址:REPLUG: Retrieval-Augmented Black-Box Language Models

  • 本文提出REPLUG,一个将语言模型视为黑盒检索增强的语言模型架构。在REPLUG中,仅将检索得到的文档拼接到原有输入前面即可,不需要像以前一样更新语言模型参数。该架构中可以通过更新检索器进一步提升性能。
    在这里插入图片描述

REPLUG

在这里插入图片描述

  • 给一个输入上下文
  • REPLUG会首先从外部资源 D = { d 1 , … , d m } D=\{d_1,\dots,d_m\} D={d1,,dm}中检索出一些相关文档
    • 使用基于双塔encoder(共享参数)的dense retrieval来检索文档,一个encoder用来编码输入 x x x和文档 d d d
    • 文档与输入的embedding都是对其中每个token最后一个隐藏层表达的平均值
    • 通过cos similarity计算 x x x d d d的相关性: s ( d , x ) = c o s ( E ( d ) , E ( x ) ) s(d,x) = cos(E(d),E(x)) s(d,x)=cos(E(d),E(x))
    • 预先计算文档的embedding,并利用FAISS来快速找到top-k文档
  • 之后我们将每个检索到的文档与输入上下文进行拼接,并行输入到大模型中
    • 由于模型输入限制,无法将所有检索文档与输入 x x x进行拼接
    • 采用聚合策略,拼接时,将每个top-k文档分别拼接在 x x x前面,并将拼接结果分别输入到语言模型中。
  • 最后聚合每个并行输入得到的预测概率
    • 对上面分别计算的结果进行聚合
      • 给定上下文输入 x x x 和 top-k 相关文档集合 D ′ D^{'} D,下一个token y y y 的生成概率由加权平均决定
        • p ( y ∣ x , D ′ ) = ∑ d ∈ D ′ p ( y ∣ d ∘ x ) ⋅ λ ( d , x ) p(y|x,D^{'}) = \sum_{d \in D^{'}}p(y|d \circ x) \cdot \lambda(d,x) p(yx,D)=dDp(ydx)λ(d,x)
          • 其中 λ ( d , x ) \lambda(d,x) λ(d,x) d d d x x x 相似度 s ( d , x ) s(d,x) s(d,x) 进行softmax的结果

REPLUG LSR: Training the Dense Retriever

在这里插入图片描述

REPLUG LSR 可以看做 REPLUG的一个增强版本。在REPLUG中,我们使用的检索器可能不够适配语言模型,因此这里利用语言模型本身反馈的监督信号,来调整REPLUG中的检索器。

  • 这里的监督信号可以告诉我们,什么样的文档应该被检索回来

核心思想:our approach can be seen as adjusting the probabilities of the retrieved documents to match the probabilities of the output sequence perplexities of the language model

  • 其实就是匹配检索文档的概率与语言模型输出序列的概率
    • 输出序列的概率就是语言模型提供的监督信号
    • 这样做的理由
      • 如果模型输出的ground truth序列的概率更大,那么我们认为模型的效果越好
      • 我们认为,如果一个文档对模型的输出更有帮助,那么我们就认为这个文档更应该被检索回来,其检索的概率也应该更大。
      • 所以说,一个文档被检索回来的概率应该与使用这个文档得到输出序列的概率是正相关的,因此我们想要匹配检索文档的概率与语言模型输出序列的概率

这部分介绍如何计算检索文档概率分布与输出序列概率分布

Computing Retrieval Likelihood

给定输入 x x x,我们检索回来概率最大的top-k个文档,为 D ′ ⊂ D D^{'} \subset D DD,文档 d d d的检索概率(likelihood)为

P R ( d ∣ x ) = e s ( d , x ) / γ ∑ d ∈ D ′ e s ( d , x ) / γ P_R(d \mid x)=\frac{e^{s(d, x) / \gamma}}{\sum_{d \in \mathcal{D}^{\prime}} e^{s(d, x) / \gamma}} PR(dx)=dDes(d,x)/γes(d,x)/γ

  • γ \gamma γ是用来控制 softmax 温度的超参

  • 按理应该在整个 D D D 上进行,但是那样计算量太大,因此在 D ′ D^{'} D 上近似计算

Computing LM likelihood

将语言模型用来评估每个文档对语言模型困惑度的提升程度,首先计算 P L M ( y ∣ d , x ) P_{LM}(y|d,x) PLM(yd,x),这是给定 x x x 和文档 d d d 时,ground truth y y y 的生成概率。如果这个概率越大,则说明当前文档对困惑度的提升程度越大。然后计算分布:

Q ( d ∣ x , y ) = e P L M ( y ∣ d , x ) / β ∑ d ∈ D ′ e P L M ( y ∣ d , x ) / β Q(d \mid x, y)=\frac{e^{P_{L M}(y \mid d, x) / \beta}}{\sum_{d \in \mathcal{D}^{\prime}} e^{P_{L M}(y \mid d, x) / \beta}} Q(dx,y)=dDePLM(yd,x)/βePLM(yd,x)/β

  • β \beta β是超参

有了两个分布之后,用loss function 对二者进行匹配

在给定 x x x y y y 时,计算检索概率分布和语言模型概率分布,我们利用KL divergence来匹配两个分布,并用来优化dense retriever

L = 1 ∣ B ∣ ∑ x ∈ B K L ( P R ( d ∣ x ) ∥ Q L M ( d ∣ x , y ) ) \mathcal{L}=\frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} K L\left(P_R(d \mid x) \| Q_{\mathrm{LM}}(d \mid x, y)\right) L=B1xBKL(PR(dx)QLM(dx,y))

  • B B B 是输入 x x x 的集合
  • 我们最小化损失函数来优化检索器,LM保持不动

因为检索器参数在训练过程中更新,参数更新后document embedding会变化,因此每隔 T T T步就重新算一次document embedding,并重复上述过程

Training Setup

Model

  • LM: GPT-3(for REPLUG LSR)
  • Retriever:Contriver(2022新模型)

Training data

  • 所有训练数据都来自 Pile training data(包含不同领域文本的language model benchmark)

  • 800K 个 256 token长的序列作为训练queries

    • 每个query分成两部分,前128token作为 input context x x x,后一半作为需要续写的ground truth y y y
  • 外部语料库 D D D, 采样36M 128 token长的文档

Results

Language Modeling

在这里插入图片描述

  • randomly subsampled Pile training data (367M documents of 128 tokens) and use them as the retrieval corpus for all models

MMLU

在这里插入图片描述

  • Atlas trains both the retriever and the language model, which we consider a white-box retrieval LM setting.
  • 对于检索增强的版本,我们将test question作为query,从Wikipedia中检索10个文档,与question拼接成10个输入,最后的结果是10个输出的聚合

Open Domain QA

在这里插入图片描述

  • dataset: Natural Question and TriviaQA

    • For evaluation, we consider the few-shot(use a few training data) and full data(use all training data)
  • RETRO, R2-D2, Atlas are finetuned on the training data, either in a few-shot setting or with full training data

Analysis

在这里插入图片描述

  • 性能的提升不止源于聚合不同的输出结果,聚合相关的文档是成功的关键
  • 随着聚合文档数目的提升,REPLUGREPLUG LSR 的性能单点提升,不过 a small number of documents(e.g., 10)就可以做的不错

在这里插入图片描述

  • REPLUG带来的性能增益与模型大小保持一致, 且能够应用到不同模型上

在这里插入图片描述

  • REPLUG is more helpful when texts contain rare entities

这篇关于【论文阅读】REPLUG: Retrieval-Augmented Black-Box Language Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210523

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需