开箱报告,Simulink Toolbox库模块使用指南(五)——S-Fuction模块(C MEX S-Function)

本文主要是介绍开箱报告,Simulink Toolbox库模块使用指南(五)——S-Fuction模块(C MEX S-Function),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

前言

C MEX S-Function

算法原理

原始信号创建

编写S函数

仿真验证

Tips

分析和应用

总结


前言

        见《开箱报告,Simulink Toolbox库模块使用指南(一)——powergui模块》

        见《开箱报告,Simulink Toolbox库模块使用指南(二)——MATLAB Fuction模块》

        见《开箱报告,Simulink Toolbox库模块使用指南(三)——Simscape 电路仿真模块》

        见《开箱报告,Simulink Toolbox库模块使用指南(四)——S-Fuction模块》

C MEX S-Function

        C MEX S-Function是使用C语言开发的一种S-Fuction,具备前一篇文章中讲解的S-Fuction的全部基本特性。它对应S-Fuction中的Level2类型,支持访问更广泛的 S-Function API 集,并支持代码生成。由于汽车电子工程与C语言密不可分,所以我们必须对C MEX S-Function重点关注。

        Mathworks官方Help对该模块的说明如下所示。

        本文以DFT算法为例,介绍如何利用C MEX S-Function搭建项目需求中高度自定义的信号解耦模块。

算法原理

        傅里叶变换告诉我们,任何周期信号都可以分解为正弦波的叠加。具体的做法是:将被求解的原始信号,与目标频率的信号相乘,然后再积分,就得到了原始信号在该频率上的分量,公式如下:

        原始信号:S;

        目标频率信号:D_cos = cos(2pi*w*t);

        目标频率信号:D_sin = sin(2pi*w*t);

        目标信号实部:D_real = dot(S,D_cos)/N*2;

        目标信号虚部:D_imag = dot(S,D_sin)/N*2;

        目标信号模数:D_modl = sqrt(D_real^2 + D_imag^2);

原始信号创建

        这里沿用前一篇文章中的电路方程模型,见《开箱报告,Simulink Toolbox库模块使用指南(四)——S-Fuction模块》

        创建电压和电流信号如下:

        t(S) = (0 : 4999)*0.0001;

        I(A) = 4.235 + 0.035*sin(2pi * 50t + pi);

        U(A) = 3.529 + 0.071*sin(2pi * 50t);

        在Matlab的命令窗口中运行该动态方程,得到的电流和电压曲线,与前一篇文章一致,如下所示:

编写S函数

        根据官方的Basic C MEX S-Function模板,写出的S函数完整代码如下:

#define S_FUNCTION_NAME  DFT_CMexSfunc    //函数名字,与C文件名一致
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"    //Matlab宏函数库static real_T Fs = 10e3;    //信号采样频率,与信号源一致
static real_T L = 5e3;      //信号采样点个数,两者根据Nyquist定理计算/* Function: mdlInitializeSizes ===============================================* Abstract:*    The sizes information is used by Simulink to determine the S-function*    block's characteristics (number of inputs, outputs, states, etc.).*/
static void mdlInitializeSizes(SimStruct *S)
{//一个算法参数Freq,目标解算频率ssSetNumSFcnParams(S, 1);  /* Number of expected parameters */if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {/* Return if number of expected != number of actual parameters */return;}ssSetNumContStates(S, 0);ssSetNumDiscStates(S, 4);      //离散状态的个数if (!ssSetNumInputPorts(S, 1)) return;ssSetInputPortWidth(S, 0, 1);      //一个信号输入端口,信号维度1ssSetInputPortRequiredContiguous(S, 0, true); /*direct input signal access*//** Set direct feedthrough flag (1=yes, 0=no).* A port has direct feedthrough if the input is used in either* the mdlOutputs or mdlGetTimeOfNextVarHit functions.*/ssSetInputPortDirectFeedThrough(S, 0, 1);if (!ssSetNumOutputPorts(S, 1)) return;ssSetOutputPortWidth(S, 0, 1);      //一个信号输出端口,信号维度1ssSetNumSampleTimes(S, 1);ssSetNumRWork(S, 0);ssSetNumIWork(S, 0);ssSetNumPWork(S, 0);ssSetNumModes(S, 0);ssSetNumNonsampledZCs(S, 0);/* Specify the operating point save/restore compliance to be same as a * built-in block */ssSetOperatingPointCompliance(S, USE_DEFAULT_OPERATING_POINT);ssSetOptions(S, 0);
}/* Function: mdlInitializeSampleTimes =========================================* Abstract:*    This function is used to specify the sample time(s) for your*    S-function. You must register the same number of sample times as*    specified in ssSetNumSampleTimes.*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
//     ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);ssSetSampleTime(S, 0, 0.001);     //算法运行周期0.001s,不同于信号采样频率ssSetOffsetTime(S, 0, 0.0);}#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */
#if defined(MDL_INITIALIZE_CONDITIONS)/* Function: mdlInitializeConditions ========================================* Abstract:*    In this function, you should initialize the continuous and discrete*    states for your S-function block.  The initial states are placed*    in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S).*    You can also perform any other initialization activities that your*    S-function may require. Note, this routine will be called at the*    start of simulation and if it is present in an enabled subsystem*    configured to reset states, it will be call when the enabled subsystem*    restarts execution to reset the states.*/static void mdlInitializeConditions(SimStruct *S){//离散状态赋初值real_T Count = 1;real_T t = 0;real_T cos_integ = 0;real_T sin_integ = 0;real_T *x0 = ssGetRealDiscStates(S);*x0++ = Count;*x0++ = t;*x0++ = cos_integ;*x0++ = sin_integ;}
#endif /* MDL_INITIALIZE_CONDITIONS */#define MDL_START  /* Change to #undef to remove function */
#if defined(MDL_START) /* Function: mdlStart =======================================================* Abstract:*    This function is called once at start of model execution. If you*    have states that should be initialized once, this is the place*    to do it.*/static void mdlStart(SimStruct *S){}
#endif /*  MDL_START *//* Function: mdlOutputs =======================================================* Abstract:*    In this function, you compute the outputs of your S-function*    block.*/
static void mdlOutputs(SimStruct *S, int_T tid)
{real_T real = 0;real_T imag = 0;real_T modl = 0;real_T *y = ssGetOutputPortSignal(S,0);real_T *x = ssGetRealDiscStates(S);if(x[0]==L+1){real = x[2]/L*2;imag = x[3]/L*2;modl = sqrt(real*real + imag*imag);y[0] = modl;       //解算结果输出}
}#define MDL_UPDATE  /* Change to #undef to remove function */
#if defined(MDL_UPDATE)/* Function: mdlUpdate ======================================================* Abstract:*    This function is called once for every major integration time step.*    Discrete states are typically updated here, but this function is useful*    for performing any tasks that should only take place once per*    integration step.*/static void mdlUpdate(SimStruct *S, int_T tid){real_T Sr_cos;real_T Sr_sin;real_T T;real_T Freq = (real_T) *mxGetPr(ssGetSFcnParam(S,0));real_T *x = ssGetRealDiscStates(S);const real_T *u = (const real_T*) ssGetInputPortSignal(S,0);if(x[0]<=L){   Sr_cos = cos(2*3.14 * Freq*x[1]);Sr_sin = sin(2*3.14 * Freq*x[1]);x[2] = x[2] + u[0]*Sr_cos;x[3] = x[3] + u[0]*Sr_sin;x[0] = x[0] + 1;T = 1/Fs;x[1] = x[1] + T;}}
#endif /* MDL_UPDATE *//* Function: mdlTerminate =====================================================* Abstract:*    In this function, you should perform any actions that are necessary*    at the termination of a simulation.  For example, if memory was*    allocated in mdlStart, this is the place to free it.*/
static void mdlTerminate(SimStruct *S)
{
}

        C代码编写好之后,用Matlab指令 'mex DFT_CMexSfunc.c' 进行编译。如果代码没有错误,编译成功后会看到如下提示:

仿真验证

        将上述编写好的C MEX S-Fuction模块,放入Simulink模型中进行验证,如下所示:

        运行上述模型,得到的电流和电压如上图所示,也与前一篇文章一致。

        至此,可以证明该C MEX S-Fuction模块可以较好地求解,耦合信号中的自信号分量。

Tips

        C MEX S-Fuction模块能够让使用者充分自由地开发Simulink模块,一方面是跨语言的程序开发方式,只需要include其他c文件的头文件,即可调用其中已开发和验证好的c函数。另一方面是大量的能够与Simulink引擎交互的的宏函数,使得开发人员有了更大的发挥空间。一些常用的,必须熟练掌握宏函数如下:

1.系统输入宏函数

ssSetNumInputPorts(S, 1)

ssSetInputPortWidth(S, 0, 1)

ssSetInputPortDirectFeedThrough(S, 0, 1)

real_T *u = (real_T*) ssGetInputPortSignal(S,0);

Temp = u[0];

2.系统参数宏函数

ssSetNumSFcnParams(S, 1); 

real_T Pa1 = (real_T) *mxGetPr(ssGetSFcnParam(S,0));

//real_T Pa2 = (real_T) *mxGetPr(ssGetSFcnParam(S,1));

Temp = Pa1;

3.系统周期宏函数

ssSetSampleTime(S, 0, 0.001);

ssSetOffsetTime(S, 0, 0.0);

4.系统状态宏函数

ssSetNumDiscStates(S, 4);

real_T *x = ssGetRealDiscStates(S);

*x++ = a;

*x++ = b;

*x++ = c;

*x++ = d;

x[0] = x[0] + 1;

x[1] = x[1] + 1;

x[2] = x[2] + 1;

x[3] = x[3] + 1;

5.系统输出宏函数

ssSetNumOutputPorts(S, 1)

ssSetOutputPortWidth(S, 0, 1)

real_T *y = ssGetOutputPortSignal(S,0);

y[0] = a;

//y[1] = b;

//y[2] = c;

//y[3] = d;

分析和应用

        C MEX S-Fuction是S-Fuction的一种,他们的相同点一样,不同点在于灵活度和自由度进一步延伸,功能进一步扩展。比如本文举例的DFT求解模块,是在原有DFT算法的基础上进一步裁剪,只求解目标期望频率上的信号分量,并且把原本算法中集中计算的几个向量积分、乘除、开方等运算分解到每一个运算周期中,变成单个变量的运算(需要时还可以灵活调整指定N个周期把算法执行完),以此通过延长运算时间来节省算法对单个周期硬件算力的开销,不仅能够保证整个系统的实时性能,还能大大提高算法求解得数据量,以此提高求解精度。同时本文举例的DFT求解求解算法也是以前开发的,经过验证的模块功能,利用C MEX S-Fuction提供的C函数调用机制,无缝衔接的移植了过来。

总结

        以上就是本人在使用C MEX S-Fuction模块时,一些个人理解和分析的总结,首先介绍了该模块的背景知识,然后展示它的使用方法,最后分析了该模块的特点和适用场景。

        后续还会分享另外几个最近总结的Simulink Toolbox库模块,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

这篇关于开箱报告,Simulink Toolbox库模块使用指南(五)——S-Fuction模块(C MEX S-Function)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210402

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Java JSQLParser解析SQL的使用指南

《JavaJSQLParser解析SQL的使用指南》JSQLParser是一个Java语言的SQL语句解析工具,可以将SQL语句解析成为Java类的层次结构,还支持改写SQL,下面我们就来看看它的具... 目录一、引言二、jsQLParser常见类2.1 Class Diagram2.2 Statement

正则表达式r前缀使用指南及如何避免常见错误

《正则表达式r前缀使用指南及如何避免常见错误》正则表达式是处理字符串的强大工具,但它常常伴随着转义字符的复杂性,本文将简洁地讲解r的作用、基本原理,以及如何在实际代码中避免常见错误,感兴趣的朋友一... 目录1. 字符串的双重翻译困境2. 为什么需要 r?3. 常见错误和正确用法4. Unicode 转换的

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚