使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题

本文主要是介绍使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 问题描述及配置
  • 网上资料查找
    • 1.tqdm问题
    • 2.dataloader问题
    • 3.model(input)写法问题
    • 4.环境变量问题
  • 我的卡死问题解决方法

问题描述及配置

在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错

[E ProcessGroupNCCL.cpp:828] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(OpType=BROADCAST, Timeout(ms)=1800000) ran for 1808499 milliseconds before timing out.
[E ProcessGroupNCCL.cpp:587] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=1800000) ran for 1808493 milliseconds before timing out.

而且,程序能正常运行几十个epoch,然后在运行中间卡死。卡死的位置永远是出现在测试集进行eval结束之后,而不是出现在对训练集的训练过程中。

例如,我每40个epoch进行一次测试(eval),那么卡死经常会出现在第80个epoch,或者第120个epoch的位置,有时候还会出现在第400个epoch。

完整报错如下图所示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

网上资料查找

我查阅网上资料,有很多种方法解决如下问题,虽然网上所查阅到的方法都没有解决我的问题,但是在这里都记录一下,或许对大家有用:

1.tqdm问题

有说在训练过程中,如果使用了tqdm打印进度条会出现卡死的问题,需要将所有tqdm代码都删除

2.dataloader问题

dataloader分为两种问题:

  1. 有的博客说使用pytorch中的dataloader对dataset进行封装的时候,在多GPU训练的情况下会卡死,所以需要去除dataloader的封装,直接使用dataset进行训练(但是我认为这种说法不可靠
  2. 有的博客说使用dataloader的时候,如果设置了drop_last=False,或者是设置了shuffle=True,会导致开始(我认为这种说法也不可靠

3.model(input)写法问题

在给予模型输入,进行正向传播的时候,我们通常写法是

output=model(input)

一些说法说这种写法在多GPU训练的时候,在模型进行eval的时候需要改一下:

output=model.module(input)

这样即可解决问题

4.环境变量问题

环境变量问题应该是最主要的一个解决方案,即更改环境变量。更改环境变量有很多方法,这里说一下在bash中临时更改环境变量的方法:

即在bash中输入

export NCCL_P2P_LEVEL=NVL

或者输入

export NCCL_P2P_DISABLE=1

然后再运行多GPU训练的代码

我的卡死问题解决方法

我经过长时间调试,发现我的问题出在这里:

我每次在eval的时候,都会判断这次测试集的loss是否和以往的相比是否是最小的,如果是最小的,那么获取这一个epoch的模型参数,问题就出现在获取模型参数这里(红框画出来的)
在这里插入图片描述
或者如果不加self.accelerator.wait_for_everyone()也是一样的,会出现同样的问题
在这里插入图片描述
卡死就在获取模型参数的部分,这里就是“有概率”出现卡死,因为运行一次可能没问题,但是如果我每40个epoch就运行一次eval,那么在第80个,第120个epoch就会卡死。

我猜测这是由于accelerate是通过多进程来控制多个GPU进行训练的,这里多个进程都去获取模型参数,所以才会出现卡死的情况。

因此,解决方法如下

在这里插入图片描述

在判断条件中要加上判断是否在主进程中,然后去掉self.accelerator.wait_for_everyone()

这样就解决了卡死的问题。

这篇关于使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/210322

相关文章

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Java中的record使用详解

《Java中的record使用详解》record是Java14引入的一种新语法(在Java16中成为正式功能),用于定义不可变的数据类,这篇文章给大家介绍Java中的record相关知识,感兴趣的朋友... 目录1. 什么是 record?2. 基本语法3. record 的核心特性4. 使用场景5. 自定

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一