使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题

本文主要是介绍使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 问题描述及配置
  • 网上资料查找
    • 1.tqdm问题
    • 2.dataloader问题
    • 3.model(input)写法问题
    • 4.环境变量问题
  • 我的卡死问题解决方法

问题描述及配置

在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错

[E ProcessGroupNCCL.cpp:828] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(OpType=BROADCAST, Timeout(ms)=1800000) ran for 1808499 milliseconds before timing out.
[E ProcessGroupNCCL.cpp:587] [Rank 0] Watchdog caught collective operation timeout: WorkNCCL(OpType=ALLREDUCE, Timeout(ms)=1800000) ran for 1808493 milliseconds before timing out.

而且,程序能正常运行几十个epoch,然后在运行中间卡死。卡死的位置永远是出现在测试集进行eval结束之后,而不是出现在对训练集的训练过程中。

例如,我每40个epoch进行一次测试(eval),那么卡死经常会出现在第80个epoch,或者第120个epoch的位置,有时候还会出现在第400个epoch。

完整报错如下图所示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

网上资料查找

我查阅网上资料,有很多种方法解决如下问题,虽然网上所查阅到的方法都没有解决我的问题,但是在这里都记录一下,或许对大家有用:

1.tqdm问题

有说在训练过程中,如果使用了tqdm打印进度条会出现卡死的问题,需要将所有tqdm代码都删除

2.dataloader问题

dataloader分为两种问题:

  1. 有的博客说使用pytorch中的dataloader对dataset进行封装的时候,在多GPU训练的情况下会卡死,所以需要去除dataloader的封装,直接使用dataset进行训练(但是我认为这种说法不可靠
  2. 有的博客说使用dataloader的时候,如果设置了drop_last=False,或者是设置了shuffle=True,会导致开始(我认为这种说法也不可靠

3.model(input)写法问题

在给予模型输入,进行正向传播的时候,我们通常写法是

output=model(input)

一些说法说这种写法在多GPU训练的时候,在模型进行eval的时候需要改一下:

output=model.module(input)

这样即可解决问题

4.环境变量问题

环境变量问题应该是最主要的一个解决方案,即更改环境变量。更改环境变量有很多方法,这里说一下在bash中临时更改环境变量的方法:

即在bash中输入

export NCCL_P2P_LEVEL=NVL

或者输入

export NCCL_P2P_DISABLE=1

然后再运行多GPU训练的代码

我的卡死问题解决方法

我经过长时间调试,发现我的问题出在这里:

我每次在eval的时候,都会判断这次测试集的loss是否和以往的相比是否是最小的,如果是最小的,那么获取这一个epoch的模型参数,问题就出现在获取模型参数这里(红框画出来的)
在这里插入图片描述
或者如果不加self.accelerator.wait_for_everyone()也是一样的,会出现同样的问题
在这里插入图片描述
卡死就在获取模型参数的部分,这里就是“有概率”出现卡死,因为运行一次可能没问题,但是如果我每40个epoch就运行一次eval,那么在第80个,第120个epoch就会卡死。

我猜测这是由于accelerate是通过多进程来控制多个GPU进行训练的,这里多个进程都去获取模型参数,所以才会出现卡死的情况。

因此,解决方法如下

在这里插入图片描述

在判断条件中要加上判断是否在主进程中,然后去掉self.accelerator.wait_for_everyone()

这样就解决了卡死的问题。

这篇关于使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210322

相关文章

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py