Variations-of-SFANet-for-Crowd-Counting记录

2023-10-14 09:44

本文主要是介绍Variations-of-SFANet-for-Crowd-Counting记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting

论文链接:https://arxiv.org/abs/2003.05586

源码链接:GitHub - Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting: The official implementation of "Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting"

框架结构:基于点标签的目标检测与计数深度学习框架盘点-CSDN博客

本文中使用到的框架:

利用贝叶斯损失(Bayesian loss, BL)的人群计数: GitHub - ZhihengCV/Bayesian-Crowd-Counting: Official Implement of ICCV 2019 oral paper Bayesian Loss for Crowd Count Estimation with Point Supervision

SFANet: GitHub - pxq0312/SFANet-crowd-counting: This is an unofficial implement of the arXiv paper Dual Path Multi-Scale Fusion Networks with Attention for Crowd Counting by PyTorch.

上下文信息提取CAN: GitHub - weizheliu/Context-Aware-Crowd-Counting: Official Code for Context-Aware Crowd Counting. CVPR 2019

要完成UCF-QNRF数据集训练代码,参考:GitHub - ZhihengCV/Bayesian-Crowd-Counting: Official Implement of ICCV 2019 oral paper Bayesian Loss for Crowd Count Estimation with Point Supervision

要完成Shanghaitech数据集训练代码,参考:GitHub - pxq0312/SFANet-crowd-counting: This is an unofficial implement of the arXiv paper Dual Path Multi-Scale Fusion Networks with Attention for Crowd Counting by PyTorch.

M-SFANet和M-SegNet实现参考框架中的models部分:https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting/tree/master/models

数据集

来自工程readme文件,为了再现论文中报告的结果,可以使用这些预处理的数据集。尚未完成,并可能在未来更新。

使用高斯核处理过的Shanghaitech B 数据集:https://drive.google.com/file/d/1Jjmvp-BEa-_81rXgX1bvdqi5gzteRdJA/view

贝叶斯处理(处理方式和GitHub - ZhihengCV/Bayesian-Crowd-Counting: Official Implement of ICCV 2019 oral paper Bayesian Loss for Crowd Count Estimation with Point Supervision一样)过的Shanghaitech datasets (A&B):https://drive.google.com/file/d/1azoaoRGxfXI7EkSXGm4RrX18sBnDxUtP/view

Beijing-BRT dataset(源自GitHub - XMU-smartdsp/Beijing-BRT-dataset):https://drive.google.com/file/d/1JRjdMWtWiLxocHensFfJzqLoJEFksjVy/view

预训练权重

Shanghaitech A&B:https://drive.google.com/file/d/1MxGZjapIv6O-hzxEeHY7c93723mhGKrG/view

测试可视化代码应该使用UCF_QNRF数据集上的预训练M_SegNet*:https://drive.google.com/file/d/1fGuH4o0hKbgdP1kaj9rbjX2HUL1IH0oo/view(M_SFANet*预训练权重也包含在内)

案例demo

下面是一个测试案例,使用UCF-QNRF数据集上的预训练M-SFANet*去计数图片中的人。

测试图片是./images/img_0071.jpg(来自UCF-QNRF测试集)

import cv2
from PIL import Image
import numpy as npimport torch
from torchvision import transformsfrom datasets.crowd import Crowd
from models import M_SFANet_UCF_QNRF# Simple preprocessing.
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# An example image with the label = 1236.
img = Image.open("./images/img_0071.jpg").convert('RGB')
height, width = img.size[1], img.size[0]
height = round(height / 16) * 16
width = round(width / 16) * 16
img = cv2.resize(np.array(img), (width,height), cv2.INTER_CUBIC)
img = trans(Image.fromarray(img))[None, :]model = M_SFANet_UCF_QNRF.Model()
# Weights are stored in the Google drive link.
# The model are originally trained on a GPU but, we can also test it on a CPU.
# For ShanghaitechWeights, use torch.load("./ShanghaitechWeights/...")["model"] with M_SFANet.Model() or M_SegNet.Model()
model.load_state_dict(torch.load("./Paper's_weights_UCF_QNRF/best_M-SFANet*_UCF_QNRF.pth", map_location = torch.device('cpu')))# Evaluation mode
model.eval()
density_map = model(img)
# Est. count = 1168.37 (67.63 deviates from the ground truth)
print(torch.sum(density_map).item())

运行上述代码结果如下

这篇关于Variations-of-SFANet-for-Crowd-Counting记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209700

相关文章

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

统一返回JsonResult踩坑的记录

《统一返回JsonResult踩坑的记录》:本文主要介绍统一返回JsonResult踩坑的记录,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录统一返回jsonResult踩坑定义了一个统一返回类在使用时,JsonResult没有get/set方法时响应总结统一返回

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java对接海康摄像头的完整步骤记录

《java对接海康摄像头的完整步骤记录》在Java中调用海康威视摄像头通常需要使用海康威视提供的SDK,下面这篇文章主要给大家介绍了关于java对接海康摄像头的完整步骤,文中通过代码介绍的非常详细,需... 目录一、开发环境准备二、实现Java调用设备接口(一)加载动态链接库(二)结构体、接口重定义1.类型

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de