深度学习2015年文章整理(CVPR2015)

2023-10-14 03:32

本文主要是介绍深度学习2015年文章整理(CVPR2015),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://blog.csdn.net/u010402786/article/details/50548996

国内外从事计算机视觉和图像处理相关领域的著名学者都以在三大顶级会议(ICCV,CVPR和ECCV)上发表论文为荣,其影响力远胜于一般SCI期刊论文,这三大顶级学术会议论文也引领着未来的研究趋势。CVPR是主要的计算机视觉会议,可以把它看作是计算机视觉研究的奥林匹克。博主今天先来整理CVPR2015年的精彩文章(这个就够很长一段时间消化的了) 
顶级会议CVPR2015参会paper网址: 
http://www.cv-foundation.org/openaccess/CVPR2015.py

来吧,一项项的开始整理,总有你需要的文章在等你!

CNN Architectures

CNN网络结构: 
1.Hypercolumns for Object Segmentation and Fine-Grained Localization 
Authors: Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik

2.Modeling Local and Global Deformations in Deep Learning: Epitomic Convolution, Multiple Instance Learning, and Sliding Window Detection 
Authors: George Papandreou, Iasonas Kokkinos, Pierre-André Savalle

3.Going Deeper With Convolutions 
Authors: Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich 
这篇文章推荐一下,使用了《network in network》中的用 global averaging pooling layer 替代 fully-connected layer的思想。有看过的可以私信博主,一起讨论文章心得。

4.Improving Object Detection With Deep Convolutional Networks via Bayesian Optimization and Structured Prediction 
Authors: Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, Honglak Lee

5.Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images 
Authors: Anh Nguyen, Jason Yosinski, Jeff Clune

Action and Event Recognition

1.Deeply Learned Attributes for Crowded Scene Understanding 
Authors: Jing Shao, Kai Kang, Chen Change Loy, Xiaogang Wang

2.Modeling Video Evolution for Action Recognition 
Authors: Basura Fernando, Efstratios Gavves, José Oramas M., Amir Ghodrati, Tinne Tuytelaars

3.Joint Inference of Groups, Events and Human Roles in Aerial Videos 
Authors: Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic, Song Chun Zhu

Segmentation in Images and Video

1.Causal Video Object Segmentation From Persistence of Occlusions 
Authors: Brian Taylor, Vasiliy Karasev, Stefano Soatto

2.Fully Convolutional Networks for Semantic Segmentation 
Authors: Jonathan Long, Evan Shelhamer, Trevor Darrell 
——文章把全连接层当做卷积层,也用来输出featuremap。这样相比Hypercolumns/HED 这样的模型,可迁移的模型层数(指VGG16/Alexnet等)就更多了。但是从文章来看,因为纯卷积嘛,所以featuremap的每个点之间没有位置信息的区分。相较于Hypercolumns的claim,鼻子的点出现在图像的上半部分可以划分为pedestrian类的像素,但是如果出现在下方就应该划分为背景。所以位置信息应该是挺重要需要考虑的。这也许是速度与性能的trade-off?

3.Is object localization for free - Weakly-supervised learning with convolutional neural networks 
——弱监督做object detection的文章。首先fc layer当做conv layer与上面这篇文章思想一致。同时把最后max pooling之前的feature map看做包含class localization的信息,只不过从第五章“Does adding object-level supervision help classification”的结果看,效果虽好,但是这一物理解释可能不够完善。

4.Shape-Tailored Local Descriptors and Their Application to Segmentation and Tracking 
Authors: Naeemullah Khan, Marei Algarni, Anthony Yezzi, Ganesh Sundaramoorthi

5.Deep Filter Banks for Texture Recognition and Segmentation 
Authors: Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi

6.Deeply learned face representations are sparse, selective, and robust, Yi Sun, Xiaogang Wang, Xiaoou Tang 
——DeepID系列之DeepID2+。在DeepID2之上的改进是增加了网络的规模(feature map数目),另外每一层都接入一个全连通层加supervision。最精彩的地方应该是后面对神经元性能的分析,发现了三个特点:1.中度稀疏最大化了区分性,并适合二值化;2.身份和attribute选择性;3.对遮挡的鲁棒性。这三个特点在模型训练时都没有显示或隐含地强加了约束,都是CNN自己学的。

Image and Video Processing and Restoration

1.Fast and Flexible Convolutional Sparse Coding 
Authors: Felix Heide, Wolfgang Heidrich, Gordon Wetzstein

2.What do 15,000 Object Categories Tell Us About Classifying and Localizing Actions? 
Authors: Mihir Jain, Jan C. van Gemert, Cees G. M. Snoek 
——物品的分类对行为检测有帮助作用。这篇文章是第一篇关于这个话题进行探讨的,是个深坑,大家可以关注一下,考虑占坑。

3.Hypercolumns for Object Segmentation and Fine-Grained Localization 
Authors:Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik 
——一个很好的思路!以前的CNN或者R-CNN,我们总是用最后一层作为class label,倒数第二层作为feature。这篇文章的作者想到利用每一层的信息。因为对于每一个pixel来讲,在所有层数上它都有被激发和不被激发两种态,作者利用了每一层的激发态作为一个feature vector来帮助自己做精细的物体检测。

3D Models and Images

1.The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose 
Authors: Silvia Zuffi, Michael J. Black

2.3D Shape Estimation From 2D Landmarks: A Convex Relaxation Approach 
Authors: Xiaowei Zhou, Spyridon Leonardos, Xiaoyan Hu, Kostas Daniilidis

Images and Language

这个类别的文章需要好好看看,对思路的发散很有帮助

1.Show and Tell: A Neural Image Caption Generator 
Authors: Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan

2.Deep Visual-Semantic Alignments for Generating Image Descriptions 
Authors: Andrej Karpathy, Li Fei-Fei

3.Long-Term Recurrent Convolutional Networks for Visual Recognition and Description 
Authors: Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell

4.Becoming the Expert - Interactive Multi-Class Machine Teaching 
Authors: Edward Johns, Oisin Mac Aodha, Gabriel J. Brostow

其它

CNN卷积神经网络的改进(15年最新paper): 
http://blog.csdn.net/u010402786/article/details/50499864 
文章中的四篇文章也值得一读,其中一篇在上面出现过。一定要自己下载下来看一看。

这是另外一个博主的博客,也是对CVPR的文章进行了整理: 
http://blog.csdn.net/jwh_bupt/article/details/46916653

基本许多文章里面没有注释核心思想,接下来慢慢补充。2016-01-20


这篇关于深度学习2015年文章整理(CVPR2015)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207853

相关文章

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

一篇文章让你彻底搞懂Java中VO、DTO、BO、DO、PO

《一篇文章让你彻底搞懂Java中VO、DTO、BO、DO、PO》在java编程中我们常常需要做数据交换,那么在数据交换过程中就需要使用到实体对象,这就不可避免的使用到vo、dto、po等实体对象,这篇... 目录深入浅出讲解各层对象区别+实战应用+代码对比,告别概念混淆,设计出更优雅的系统架构!一、 为什么

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Java枚举类型深度详解

《Java枚举类型深度详解》Java的枚举类型(enum)是一种强大的工具,它不仅可以让你的代码更简洁、可读,而且通过类型安全、常量集合、方法重写和接口实现等特性,使得枚举在很多场景下都非常有用,本文... 目录前言1. enum关键字的使用:定义枚举类型什么是枚举类型?如何定义枚举类型?使用枚举类型:2.

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4