c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图

2023-10-14 02:01

本文主要是介绍c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图:cv::calcHist()

cv::calcHist() 是 OpenCV 中用于计算直方图的函数。直方图是一种用于可视化图像亮度或颜色分布的工具。这函数通常应用于灰度图像或彩色图像的各个通道。以下是 cv::calcHist() 函数的基本语法和参数:

void cv::calcHist(const cv::Mat* images, // 输入图像的数组int nimages,           // 输入图像的数量const int* channels,   // 通道索引数组(可以为空)const cv::InputArray& mask, // 掩模图像(可以为空)cv::OutputArray& hist,      // 输出的直方图int dims,                 // 直方图的维数const int* histSize,      // 直方图的尺寸数组const float* ranges[],    // 直方图范围数组bool uniform = true,      // 直方图是否均匀分布bool accumulate = false   // 是否累积直方图
);

以下是参数的说明:

  • images:输入图像的数组,可以是一个或多个图像。
  • nimages:输入图像的数量,通常为1。
  • channels:通道索引数组,指定要计算直方图的通道。对于灰度图像,通常为0。对于彩色图像,通道索引可以是{0, 1, 2},分别代表蓝色、绿色和红色通道。
  • mask:可选的掩模图像,用于限制计算直方图的区域。可以为空。
  • hist:输出的直方图。
  • dims:直方图的维数。通常为1。
  • histSize:直方图的尺寸数组,表示直方图的柱数。
  • ranges:直方图范围数组,指定直方图的范围。通常为{0, 256},表示像素值的范围。
  • uniform:指定是否将直方图均匀分布,如果为true,每个直方柱的宽度相同。
  • accumulate:指定是否累积直方图,如果为true,直方图将被累积。

cv::calcHist() 函数用于计算直方图后,你可以进一步分析或可视化直方图数据。这对于图像处理、分析和计算机视觉任务非常有用。

以下是一个更完整的 cv::calcHist() 函数的示例,它将计算一幅图像的直方图并绘制出来。这个示例假定你已经读取了一幅图像,并且使用灰度图像计算直方图:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为灰度图像cv::Mat gray_image;cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = {0, 256}; // 像素值范围const float* histRange = {range};// 计算直方图cv::Mat hist;cv::calcHist(&gray_image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 创建一个空的直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 归一化直方图cv::normalize(hist, hist, 0, hist_image.rows, cv::NORM_MINMAX, -1, cv::Mat());// 绘制直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示原始图像和直方图cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);cv::imshow("Original Image", gray_image);cv::namedWindow("Histogram", cv::WINDOW_AUTOSIZE);cv::imshow("Histogram", hist_image);cv::waitKey(0);return 0;
}

这个示例将图像转换为灰度图像,计算其直方图,然后绘制直方图并显示原始图像以及对应的直方图。希望这个示例可以帮助你理解如何使用 cv::calcHist() 函数来计算和可视化图像的直方图。
在这里插入图片描述

绘制H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 分割H和S通道std::vector<cv::Mat> channels;cv::split(hsv_image, channels);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float hRange[] = { 0, 256 }; // 色相通道的像素值范围const float* hHistRange = { hRange };float sRange[] = { 0, 256 }; // 饱和度通道的像素值范围const float* sHistRange = { sRange };// 计算H和S通道的直方图cv::Mat h_hist, s_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), h_hist, 1, &histSize, &hHistRange);cv::calcHist(&channels[1], 1, 0, cv::Mat(), s_hist, 1, &histSize, &sHistRange);// 归一化直方图cv::normalize(h_hist, h_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(s_hist, s_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制H通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(h_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(h_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制S通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(s_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(s_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 显示图像和H-S直方图cv::imshow("mage", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制二维H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 定义直方图的参数int h_bins = 30; // 色相通道的柱数int s_bins = 32; // 饱和度通道的柱数int histSize[] = {h_bins, s_bins};float h_range[] = {0, 180}; // 色相通道的范围float s_range[] = {0, 256}; // 饱和度通道的范围const float* ranges[] = {h_range, s_range};// 计算H-S直方图cv::MatND hist;int channels[] = {0, 1}; // 色相和饱和度通道cv::calcHist(&hsv_image, 1, channels, cv::Mat(), hist, 2, histSize, ranges, true, false);// 归一化直方图cv::normalize(hist, hist, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个H-S直方图图像int hist_w = 512;int hist_h = 512;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制直方图for (int h = 0; h < h_bins; h++) {for (int s = 0; s < s_bins; s++) {float bin_val = hist.at<float>(h, s);int intensity = cvRound(bin_val * 255);cv::rectangle(hist_image, cv::Point(h * (hist_w / h_bins), s * (hist_h / s_bins)),cv::Point((h + 1) * (hist_w / h_bins), (s + 1) * (hist_h / s_bins)),cv::Scalar(intensity, intensity, intensity), -1);}}// 显示原始图像和H-S直方图cv::imshow("Image", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制RGB三色直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = { 0, 256 }; // 像素值范围const float* histRange = { range };// 分割RGB通道std::vector<cv::Mat> channels;cv::split(image, channels);// 计算红色通道的直方图cv::Mat red_hist;cv::calcHist(&channels[2], 1, 0, cv::Mat(), red_hist, 1, &histSize, &histRange);// 计算绿色通道的直方图cv::Mat green_hist;cv::calcHist(&channels[1], 1, 0, cv::Mat(), green_hist, 1, &histSize, &histRange);// 计算蓝色通道的直方图cv::Mat blue_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), blue_hist, 1, &histSize, &histRange);// 归一化直方图cv::normalize(red_hist, red_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(green_hist, green_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(blue_hist, blue_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制红色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(red_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(red_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制绿色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(green_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(green_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 绘制蓝色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(blue_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(blue_hist.at<float>(i))),cv::Scalar(255, 0, 0), 2, 8, 0);}// 显示原始图像和RGB三色直方图cv::imshow("mage", image);cv::imshow("RGB Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

这篇关于c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207378

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说