c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图

2023-10-14 02:01

本文主要是介绍c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图:cv::calcHist()

cv::calcHist() 是 OpenCV 中用于计算直方图的函数。直方图是一种用于可视化图像亮度或颜色分布的工具。这函数通常应用于灰度图像或彩色图像的各个通道。以下是 cv::calcHist() 函数的基本语法和参数:

void cv::calcHist(const cv::Mat* images, // 输入图像的数组int nimages,           // 输入图像的数量const int* channels,   // 通道索引数组(可以为空)const cv::InputArray& mask, // 掩模图像(可以为空)cv::OutputArray& hist,      // 输出的直方图int dims,                 // 直方图的维数const int* histSize,      // 直方图的尺寸数组const float* ranges[],    // 直方图范围数组bool uniform = true,      // 直方图是否均匀分布bool accumulate = false   // 是否累积直方图
);

以下是参数的说明:

  • images:输入图像的数组,可以是一个或多个图像。
  • nimages:输入图像的数量,通常为1。
  • channels:通道索引数组,指定要计算直方图的通道。对于灰度图像,通常为0。对于彩色图像,通道索引可以是{0, 1, 2},分别代表蓝色、绿色和红色通道。
  • mask:可选的掩模图像,用于限制计算直方图的区域。可以为空。
  • hist:输出的直方图。
  • dims:直方图的维数。通常为1。
  • histSize:直方图的尺寸数组,表示直方图的柱数。
  • ranges:直方图范围数组,指定直方图的范围。通常为{0, 256},表示像素值的范围。
  • uniform:指定是否将直方图均匀分布,如果为true,每个直方柱的宽度相同。
  • accumulate:指定是否累积直方图,如果为true,直方图将被累积。

cv::calcHist() 函数用于计算直方图后,你可以进一步分析或可视化直方图数据。这对于图像处理、分析和计算机视觉任务非常有用。

以下是一个更完整的 cv::calcHist() 函数的示例,它将计算一幅图像的直方图并绘制出来。这个示例假定你已经读取了一幅图像,并且使用灰度图像计算直方图:

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>int main() {// 读取图像cv::Mat image = cv::imread("your_image.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为灰度图像cv::Mat gray_image;cv::cvtColor(image, gray_image, cv::COLOR_BGR2GRAY);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = {0, 256}; // 像素值范围const float* histRange = {range};// 计算直方图cv::Mat hist;cv::calcHist(&gray_image, 1, 0, cv::Mat(), hist, 1, &histSize, &histRange);// 创建一个空的直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 归一化直方图cv::normalize(hist, hist, 0, hist_image.rows, cv::NORM_MINMAX, -1, cv::Mat());// 绘制直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(hist.at<float>(i))),cv::Scalar(255, 255, 255), 2, 8, 0);}// 显示原始图像和直方图cv::namedWindow("Original Image", cv::WINDOW_AUTOSIZE);cv::imshow("Original Image", gray_image);cv::namedWindow("Histogram", cv::WINDOW_AUTOSIZE);cv::imshow("Histogram", hist_image);cv::waitKey(0);return 0;
}

这个示例将图像转换为灰度图像,计算其直方图,然后绘制直方图并显示原始图像以及对应的直方图。希望这个示例可以帮助你理解如何使用 cv::calcHist() 函数来计算和可视化图像的直方图。
在这里插入图片描述

绘制H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 分割H和S通道std::vector<cv::Mat> channels;cv::split(hsv_image, channels);// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float hRange[] = { 0, 256 }; // 色相通道的像素值范围const float* hHistRange = { hRange };float sRange[] = { 0, 256 }; // 饱和度通道的像素值范围const float* sHistRange = { sRange };// 计算H和S通道的直方图cv::Mat h_hist, s_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), h_hist, 1, &histSize, &hHistRange);cv::calcHist(&channels[1], 1, 0, cv::Mat(), s_hist, 1, &histSize, &sHistRange);// 归一化直方图cv::normalize(h_hist, h_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(s_hist, s_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制H通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(h_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(h_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制S通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(s_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(s_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 显示图像和H-S直方图cv::imshow("mage", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制二维H—S直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 将图像转换为HSV颜色空间cv::Mat hsv_image;cv::cvtColor(image, hsv_image, cv::COLOR_BGR2HSV);// 定义直方图的参数int h_bins = 30; // 色相通道的柱数int s_bins = 32; // 饱和度通道的柱数int histSize[] = {h_bins, s_bins};float h_range[] = {0, 180}; // 色相通道的范围float s_range[] = {0, 256}; // 饱和度通道的范围const float* ranges[] = {h_range, s_range};// 计算H-S直方图cv::MatND hist;int channels[] = {0, 1}; // 色相和饱和度通道cv::calcHist(&hsv_image, 1, channels, cv::Mat(), hist, 2, histSize, ranges, true, false);// 归一化直方图cv::normalize(hist, hist, 0, 1, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个H-S直方图图像int hist_w = 512;int hist_h = 512;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制直方图for (int h = 0; h < h_bins; h++) {for (int s = 0; s < s_bins; s++) {float bin_val = hist.at<float>(h, s);int intensity = cvRound(bin_val * 255);cv::rectangle(hist_image, cv::Point(h * (hist_w / h_bins), s * (hist_h / s_bins)),cv::Point((h + 1) * (hist_w / h_bins), (s + 1) * (hist_h / s_bins)),cv::Scalar(intensity, intensity, intensity), -1);}}// 显示原始图像和H-S直方图cv::imshow("Image", image);cv::imshow("H-S Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

绘制RGB三色直方图

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("1.jpg");if (image.empty()) {std::cerr << "Error: Could not read the image." << std::endl;return -1;}// 定义直方图的参数int histSize = 256; // 直方图中的条柱数量float range[] = { 0, 256 }; // 像素值范围const float* histRange = { range };// 分割RGB通道std::vector<cv::Mat> channels;cv::split(image, channels);// 计算红色通道的直方图cv::Mat red_hist;cv::calcHist(&channels[2], 1, 0, cv::Mat(), red_hist, 1, &histSize, &histRange);// 计算绿色通道的直方图cv::Mat green_hist;cv::calcHist(&channels[1], 1, 0, cv::Mat(), green_hist, 1, &histSize, &histRange);// 计算蓝色通道的直方图cv::Mat blue_hist;cv::calcHist(&channels[0], 1, 0, cv::Mat(), blue_hist, 1, &histSize, &histRange);// 归一化直方图cv::normalize(red_hist, red_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(green_hist, green_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());cv::normalize(blue_hist, blue_hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat());// 创建一个直方图图像int hist_w = 512;int hist_h = 400;cv::Mat hist_image(hist_h, hist_w, CV_8UC3, cv::Scalar(0, 0, 0));// 绘制红色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(red_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(red_hist.at<float>(i))),cv::Scalar(0, 0, 255), 2, 8, 0);}// 绘制绿色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(green_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(green_hist.at<float>(i))),cv::Scalar(0, 255, 0), 2, 8, 0);}// 绘制蓝色通道直方图for (int i = 1; i < histSize; i++) {cv::line(hist_image, cv::Point(i - 1, hist_h - cvRound(blue_hist.at<float>(i - 1))),cv::Point(i, hist_h - cvRound(blue_hist.at<float>(i))),cv::Scalar(255, 0, 0), 2, 8, 0);}// 显示原始图像和RGB三色直方图cv::imshow("mage", image);cv::imshow("RGB Histogram", hist_image);cv::waitKey(0);return 0;
}

在这里插入图片描述

这篇关于c++视觉处理----绘制直方图,H—S直方图,二维H—S直方图,RGB三色直方图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207378

相关文章

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee